Bringing Information Literacy into the Social Sphere: A Case Study Using Social Software to Teach Information Literacy at WFU

ERIK T. MITCHELL and SUSAN SHARPLESS SMITH
Research, Instruction & Technology Services, Z. Smith Reynolds Library, Wake Forest University, Winston-Salem, North Carolina, USA

This article presents an approach to teaching information literacy in an academic course from a socio-technical perspective. It includes an overview of the course framework, a review of course contents, and an analysis of student responses provided through pre- and post-course surveys. The premise of the course design was that students bring a set of technical and information skills to class that address specific but not generalized information literacy goals. By designing a course to engage students from this perspective, the instructors hoped to find a new method for approaching information literacy instruction.

KEYWORDS information literacy, Web 2.0, socio-technical, student engagement, Facebook, Wake information literacy, social networking

This article presents a case study of a credit-bearing information literacy (IL) class held at Z. Smith Reynolds Library, Wake Forest University, in Winston-Salem, NC. The overarching goal of the study was to explore the potential to increase student engagement by designing a course that gave more ownership of the course content and direction to the students. We expected to accomplish this by incorporating Web 2.0 tools and promoting student engagement.
autonomy in a class designed around the concepts of group work and open academic collaboration.

HISTORY OF INFORMATION LITERACY AT WAKE FOREST

Since 2003, Z. Smith Reynolds Library has offered an elective one-credit class titled “Information Literacy in the 21st Century.” Twelve sections are offered each semester, all of which are typically filled and have waiting lists. More than 1,500 undergraduates have taken the course since its inception. The course consists of fourteen class periods that, in the early years, covered traditional IL topics: research topic selection, preparing a search strategy, evaluating information, using search engines, determining scholarly content, and proper citation of sources. Each class assignment built on the one before, culminating in an annotated bibliography on the selected research topic. From its inception, the classes have been taught by existing staff librarians. The initial course curriculum was developed using the Association of College and Research Libraries (ACRL) IL standards (ACRL 2000) and was designed to allow each section to use a single content and instructional approach template. The popularity of the course since its inception showed that it filled a need for students; however, over time, student feedback indicated that many perceived a disconnect between what was being taught and what they felt was their preferred research approach and their academic information needs. Concurrently, as instructors became more comfortable with their roles as teachers, they began to look for ways to introduce their unique insights into the curriculum.

As instructors with technology backgrounds and biases, the authors observed students were coming to class with a set of core information-seeking practices informed by their Internet use for personal and academic work. It became evident they did not necessarily buy into the traditional librarian view that there is one right way to do research and that this course would teach them that way. This perspective is echoed in the work of Mark Mabrito and Rebecca Medley (2008), who assert that the current generation views information and technology differently than previous generations. After a few semesters of instruction, we asked ourselves the question, “What if the course were designed to demystify information management and research methods by approaching IL from their existing skill set?”

In this article, the impact of social networking and technology on traditional literacy skills and concepts in IL instruction was investigated. In designing an IL curriculum centered on social and electronic information, the instructors posed the question, “Does a curriculum centered on social and technological views of IL succeed in student engagement with traditional IL concepts?” In examining this question, the instructors formed a framework, drawn from IL models, which included traditional, social, and
TABLE 1 Shapiro and Hughes' Standards

<table>
<thead>
<tr>
<th>IL elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool literacy</td>
<td>The ability to use specific applications for information acquisition and use</td>
</tr>
<tr>
<td>Resource literacy</td>
<td>The ability to understand the content, format, and location of information resources</td>
</tr>
<tr>
<td>Social-structural literacy</td>
<td>The knowledge that information is seen within the context of a social construct</td>
</tr>
<tr>
<td>Research literacy</td>
<td>The ability to use tools to conduct research</td>
</tr>
<tr>
<td>Publishing literacy</td>
<td>The ability to format information for distribution</td>
</tr>
<tr>
<td>Emerging technology literacy</td>
<td>The ability to adapt to new technologies and use them appropriately</td>
</tr>
<tr>
<td>Critical literacy</td>
<td>The ability to evaluate resources</td>
</tr>
</tbody>
</table>

technological focuses. The following literature review examines these models and concludes with a framework that was used to design content in the course.

LITERATURE REVIEW AND COURSE FRAMEWORK

One of the more common models used in IL courses is the ACRL Information Literacy Competency Standards for Higher Education. This model defines IL as “a set of abilities requiring individuals to ‘recognize when information is needed and have the ability to locate, evaluate, and use effectively the needed information’” (ACRL 2000, 2). While this model has served the IL community well, there are other models that take as their center the effects of social and technological phenomena. The design of the IL course discussed in this case study is based on the meta-literacy model of Jeremy Shapiro and Shelley Hughes (1996) and the socio-technical model of Kimmo Tuominen, Reijo Savolainen, and Sanna Talja (2005). Shapiro and Hughes viewed literacy as a set of distinct areas. Table 1 lists each of these areas with a short explanation of their scope.

In their article, Tuominen, Savolainen, and Talja (2005) pointed to current research and practice of IL that focuses on static skills and individual-centric practices. They claimed that IL and IL education need to be grounded in a socio-technical environment that recognizes the effects of community, collaboration, and the current digital environment. Their model includes six suggested areas of literacy, which are represented in Table 2.

The socio-technical model also focuses on IL from a meta-model perspective. Although the Shapiro-Hughes model includes recognition of the social role in IL, the socio-technical model views the social and technical perspectives as central to the information experience and asks what effect that has on the other set of skills and experiences that are commonly defined as elements of IL. For example, the socio-technical model examines...
skills not from an expert/novice perspective but from a specific/generalized perspective. One common view of Internet-focused research is that participants develop skills in specific contexts that have far-reaching implications in their information and learning experiences (Johnson, Levine, and Smith 2009; Mabrito and Medley 2008). Mabrito and Medley, for example, focus on the effects of common social and technological information tools, such as micro-blogging, mobile information use, and social network use, on core IL skills. They assert these IL skills need to be included in the assessment of a user's IL abilities. The perspective that students come to IL classes with a set of core skills and conceptual understandings has also been examined by research that evaluated how closely aligned instructor perceptions of student expertise and actual student expertise are in relation to specific information skills (Rowlands et al. 2008).

In designing a framework based on these models, the instructors proceeded with the assumptions that students come to IL courses with specific but not generalized IL skills. For example, students readily understand the concept of rights and intellectual property in relation to their own work but do not understand the role these concepts play in motivating creation of new knowledge. For this reason, the instructors designed the course from within an information space common to students. Second, the instructors assumed the focus on the format of information (e.g., book, journal article, free Web, and database) as discussed by Olof Sundin (2008) is less relevant than communication or process approaches. As such, the course focused on the research process and the effects of social interaction. Finally, it was assumed that the course should include a focus on current information topics and issues, allowing students to build conceptual knowledge from specific skill knowledge. The resulting model is shown in Figure 1.

<table>
<thead>
<tr>
<th>TABLE 2 Socio-Technical Literacy Standards (Tuominen, Savolainen, and Talja 2005)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL elements</td>
</tr>
<tr>
<td>The ways in which documents are, in reality, collected, selected, read, and exchanged in the course of practical activities</td>
</tr>
<tr>
<td>How texts, tools, and technologies feature in the practical accomplishment of social actions and social activities; how they are used collaboratively and for collaboration as much as for private absorption of information or for formation of personal meanings</td>
</tr>
<tr>
<td>How work practices will not (and need not) adapt to new technologies merely because they entail “obvious” benefits</td>
</tr>
<tr>
<td>How practical skills in using new information environments, tools, and technologies cannot necessarily be adopted in formal training and courses, that is, independently of the tasks, knowledge domains, and physical environments in which they are in practice used</td>
</tr>
<tr>
<td>People as knowledgeable “learners” who already possess a huge array of everyday skills and competencies acquired through experience in using particular texts and tools in practical tasks and contexts</td>
</tr>
<tr>
<td>Ideological and economic forces that are intertwined with information production and technologies</td>
</tr>
</tbody>
</table>
FIGURE 1 Course framework.

The course used each area of the framework to find specific tools and tasks for the course. Each of these areas is represented in Table 3. This table lists each literacy area along with the types of content and assignments that were used to teach the area.

TABLE 3 Course IL Areas and Elements

<table>
<thead>
<tr>
<th>Literacy areas</th>
<th>Course elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current information issues</td>
<td>Group research project; students take ownership of content through research and group discussion</td>
</tr>
<tr>
<td>Research</td>
<td>Research process, discovery and retrieval skills, evaluation, resource formats</td>
</tr>
<tr>
<td>Technology literacy</td>
<td>Focus on readily understood tools (Facebook, Google), show advanced features, show connections between technology and information (RSS, mobile devices)</td>
</tr>
<tr>
<td>Data management</td>
<td>Management of research and data (e.g., EndNote, Zotero, RSS)</td>
</tr>
<tr>
<td>Document modeling</td>
<td>Teaching the role of documents in understanding information (e.g., understanding format of digital documents, impact of organization structures such as Freemind, emphasis on the idea that container does not drive use)</td>
</tr>
<tr>
<td>Social communication</td>
<td>Group work, connecting academic work to social lives, extending IL skills and concepts outside of academic context</td>
</tr>
</tbody>
</table>
Case Study: The First Facebook Semester

Although it is taken for granted that the right Web 2.0 applications could provide an environment to leverage the social elements, this assumption was tested. Most of the Z. Smith Reynolds Library IL instructors had experimented to some extent with 2.0 tools and other technologies. A previous semester’s class had been successful using Flickr (http://www.flickr.com) and wikis (Smith, Mitchell, and Numbers 2007). Others had used Google Docs (http://docs.google.com), clickers, and blogs. On the other hand, the university learning management system (LMS) is Blackboard (http://www.blackboard.com), and it has been found to be particularly unsatisfactory in promoting interaction and a feeling of ownership by the students.

We wanted to select technologies that had a low barrier for use for both students and the instructors. We were interested in tools that lent themselves to rapid course development, allowing us to quickly and easily adjust the direction of the content and allowing students to concentrate on learning IL concepts while integrating new technology skills with those they already possessed.

The idea of using Facebook (http://www.facebook.com) bubbled to the surface as a potential Blackboard substitute. It is almost universally used by Wake Forest students and was an excellent example of student-driven space. Following investigation, we determined there was sufficient functionality in Facebook to meet our LMS needs—group space, collaboration capabilities, document storage, and third-party applications—and to extend it further. Using Facebook introduced some other questions to be explored. Would Facebook really work as an LMS? Would students accept the blending of academic and social space, and might they enjoy it? And most importantly, would students become more engaged with the course as a result?

Students were not required to become a “friend” in order to participate in this class. Instead, a Facebook group (Mitchell, Smith, and Numbers 2008) was established and they were asked to join it (see Figure 2). Students were surveyed to make certain they were agreeable to having the class through Facebook; they were unanimous in their willingness to try it out, so this Facebook group became our primary course portal.

We selected a combination of applications to accomplish different components of the course. Facebook provided us with these components:

- The Facebook Group included a discussion board used for a blog-posting assignment on an information issue, a “Wall” and messaging that was used for class communication, and links where we posted external information.
- We installed the Wiki Project Facebook application to present our syllabus and for the group research essays. Our success with using a wiki for
group work in our previous class prompted us to identify a third-party wiki application to handle this part of the class. The Wiki Project used the same software as Wikipedia, MediaWiki, which is our locally hosted wiki software.

- Along with the Wiki Project, we used three other Facebook applications for research:
 - ZSR Library search (http://apps.facebook.com/searchzsr/),
 - WorldCat (http://apps.facebook.com/worldcat/), and
 - JSTOR (http://apps.facebook.com/jstorsearch/).

Facebook did not have all the functionality needed, so non-Facebook components to provide what was lacking were integrated:

- None of the third-party bibliography generators were chosen for use because EndNote (http://www.endnote.com) is licensed at our university and is superior to applications available through Facebook. Over the years, EndNote was consistently one of the most highly rated parts of the class, so it continued to be taught.
The use of Blackboard was continued to post grades and deliver assignment feedback because of the need to guarantee privacy of this confidential information.

Freemind (http://freemind.sourceforge.net/wiki/index.php/Main_Page), a mind-mapping application, was used to create class content presentations. The goal was to offer students a non-linear self-directed Web-based tool to reinforce face-to-face instruction. Freemind was selected because a MediaWiki extension is available to display Freemind files in a wiki. Students were encouraged to follow along during class using this functionality. An example of one of the content mind-maps can be seen at http://wiki.zsr.wfu.edu/infolit/index.php/Lib100H_Spring2009_class3.

The biggest challenge to the successful deployment of the plan came from the selection of the Wiki Project application when it was discovered that the application did not offer the same level of functionality as MediaWiki. Files could not be uploaded, meaning that the Freemind files could not be accessed from within it, nor could students upload assignments. The solution was to use a locally hosted wiki where files could be uploaded, then linked to them from Facebook. This allowed us to continue to use the application for the course. However, its real problem did not emerge until after the semester was over. When setting up for the next class the following semester, it was discovered that Wiki Project had ceased, and all the course content that had been created was gone. The lesson learned from this experience was to now put only disposable content in Facebook’s third-party applications. Fortunately, this happened after the course’s end; if it had happened earlier, all the students’ work could have been lost.

There were twelve classes of content. Each content module focused on teaching an IL concept (such as research process, research management, intellectual property, or information organization), coupled with teaching a technology literacy skill (authoring in a wiki, using Endnote, automating research with Really Simple Syndication [RSS]). Assessments consisted of a combination of individual and group work that centered on research questions developed by each group about an information issue chosen by the group. Throughout the course, primary assignments built upon each other and culminated in a group presentation and wiki essay of findings about the group’s research question. Broad information issue topic areas included government use of technology, social networks and online identities, open access and scholarly output, and digital divide/net neutrality.

FINDINGS

The instructors employed both pre- and post-course surveys (see Appendix) to discover what technology and IL backgrounds students had and what perspectives students had upon completion of the course. The post-course
survey included additional questions to help discover what students thought about the course’s use of technology. While some descriptive statistics were pulled from student responses, much of the data collected allowed descriptive analysis of the course experience. The course was a sample of the population consisting of fifteen students, thirteen of whom completed the pre- and post-course surveys.

The post-course survey found that while students readily engaged with the technological tools and embraced the information issues, they also positively reported their experience with more traditional IL elements. For example, students reported the most interest in research tools and understanding the difference between scholarly and popular resources. As has been the case in other WFU courses, research management tools such as EndNote were embraced by almost all students. Conversely, students did not connect with advanced research strategies such as RSS feeds/alerts.

A comparison of pre- and post-course tool familiarity showed an initial lack of widespread knowledge of some Web 2.0 tools. As Figure 3 shows, students coming into the class did not know about RSS feeds or research management tools but were very aware of Facebook and Facebook applications. Figure 3 also shows an increase in acceptance of these tools after gaining experience with them over the duration of the course.

In asking students what their comfort level was with different uses of Facebook prior to the course, the instructors found a predictable decline in comfort level as academic use increased. As Figure 4 shows, students were least comfortable using Facebook to interact with instructors and receive grades but were very comfortable with belonging to course-based groups, posting content, and engaging in discussions in those groups.

![FIGURE 3 Pre- and post-course familiarity with technology.](image-url)
Following the course, 67 percent of students said they would recommend using this approach in other courses. Reasons cited for enjoying academic use of Facebook included novelty, their familiarity with the technology, and the preference for the Facebook interface over other course management systems. Reasons cited for not enjoying Facebook was the lack of division between academic and social space, the lack of functionality supported by other Course Management System, and perceived issues with usability.

When asked how they defined IL in the post-course survey, students emphasized skill knowledge including resource discovery skills, evaluation skills, and research management skills. When discussing conceptual knowledge, students focused primarily on evaluation (90 percent), information issues (76 percent), and organization standards (62 percent).

OBSERVATIONS

At this writing, the third semester of using Facebook for this class is coming to a conclusion. Each experience has been a bit different; there were common threads that ran among the courses and lessons learned that guided changes made for each iteration of the course.

- Because content was lost through the demise of Wiki Project, putting crucial content in an uncontrolled online environment was avoided. Course information and student work (written individual and group assignments) were housed on our own wiki server and were linked to them from the...
Bringing Information Literacy into the Social Sphere

Facebook wall and links. Only content that is considered disposable should be trusted to third-party providers.

- There is a fine line between motivating students to embrace the technology that will make their academic lives easier and overwhelming them. A one-credit course does not have sufficient time to adequately introduce students to all those technologies at a useful level. It is better to focus on one or two so students can attain a sense of competence that will serve them after the course ends. To that end, class modules were planned so that technology skills would be embedded in the concept being taught, rather than teaching a technology as a “stand-alone” class.

- Dividing the course “container” into multiple locations (Facebook, local wiki) introduced a feeling of fragmentation. Although both containers were cross-linked, students exhibited some confusion in navigating between the two. Putting important content into a non-Facebook container minimizes the primacy of using a Facebook group. Alternate solutions have been a continuing objective of the instructors.

- While students accepted using Facebook as academic space to respond to instructors’ communications and to do assigned work, they did not initiate activities independently in such a way that the Facebook group space became student driven. One reason for this may be that a one-credit course does not invite the level of self-initiated participation from students, who have many other courses competing for attention. Another reason could be a result of the functionality limitations of a Facebook group. It simply is not as full featured as the individual Facebook interface.

- Although Facebook did not become the genesis for student-driven activity, other ways to accomplish this goal have been found. For example, this semester a student-driven Web 2.0 component was designed through a group assignment. Each group selected a Web 2.0 application from http://go2web20.net/ to investigate. They identified the primary focus/purpose and researched other facets of the service, then gave oral presentations that included consideration of potential academic uses for their application. Class feedback on this assignment was uniformly positive.

- From the instructors’ perspective, framing the class around low-barrier Web 2.0 tools facilitated the ability to easily adapt and change course content and direction as the course progressed. When working with current information issues as the centerpiece for conveying IL concepts, it is important to be able to shift direction and deploy them rapidly.

NEXT STEPS

Because Facebook was accepted by the students as academic space, some of the questions that arose over the three semesters should continue to be explored. In summer 2009, both authors will be embedded in a three-week sociology class that will travel through the South to study social stratification.
Our responsibility is to design the technology students use on the road to accomplish class work and to create a sense of real-time community with those not on the trip (e.g., course alumni from the previous three trips, parents, Wake Forest community). The professors are enthusiastic about using Facebook, Twitter (http://twitter.com), and other Web 2.0 technologies to expand the course experience. The course will use Facebook Pages instead of Groups because the Pages interface offers a higher degree of flexibility. In addition to accommodating wall posts, notes (blogs), discussion threads, and media uploads, it allows the addition of up to ten Facebook applications that can be used to bring in feeds from Twitter, images from Flickr, and Google Maps to track our travels and bibliographies of course readings. The course site is available for review at http://www.facebook.com/pages/Social-Stratification-in-the-Deep-South/73430107131. Questions that hopefully will be answered include: Will student engagement with Web 2.0 technology be embraced in an immersion environment, where the students are together continuously and have only one course to focus upon? Will the students (and professors) find sufficient functionality in Facebook Pages to accomplish course goals? Will students get excited about using 2.0 technologies to share their experiences virtually with the rest of the world as the trip progresses?

Overall, the instructors’ experience in using Facebook and other social and Web 2.0 applications in the classroom has had mixed results. Negative outcomes, such as the loss of local control of data, the increased load of teaching and learning technology, and the risks associated with asking students to engage in a non-traditional academic learning environment, are all challenges in this environment. Although these are real issues, student familiarity with social tools, increased student initiation and control over the environment, and an increased ownership of course content by students indicate the use of these tools is valuable. Further, the tools chosen in these courses enabled rapid course development and a more direct line of communication with students. Given the positive and negative issues discovered in our use of these tools, it makes sense to consider how to approach these tools’ use in the classroom before using them. This decision is influenced by factors including required tool functionality, the degree of student engagement expected, expected contribution to the learning experience, and expected level of acceptance of students.

REFERENCES

APPENDIX I:

PRE AND POST-COURSE SURVEY INSTRUMENT

Note: Questions with a * were asked only in the post course survey.

1. To what extent are you familiar with/have used the following information management tools?

<table>
<thead>
<tr>
<th></th>
<th>Have not heard of</th>
<th>Heard of, have not used</th>
<th>Use infrequently</th>
<th>Use regularly</th>
<th>Use frequently</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wikis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blogs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSS feeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bibliographic management software (EndNote)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course management systems (Blackboard)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podcasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facebook/MySpace (social Web sites)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facebook applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Text messaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. How do you think that electronic tools help the classroom experience (check all that apply)
- Accessing course syllabus and presentations
- Assignment submission
- Communication to the class
- Assignment feedback
- As a place to see calendars, schedules
- As a place to collaborate with other students
- As a place to create and share knowledge
- A place to receive grades
- Other, please specify

3. How comfortable would you be using Facebook for the following types of academic work?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Very comfortable</th>
<th>Somewhat comfortable</th>
<th>Uncomfortable</th>
<th>No Opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belonging to a group as part of a class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posting to group discussions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contributing content to groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interacting with instructors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posting assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiving grades</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. What features of Facebook do you currently use?
- Keeping up with friends
- Posting pictures
- Communicating
- Professional networking
- Non-scholastic applications (Zombie, Superpoke)
- Event planning
- Scholastic applications
- As a personal Web site
- Other, please specify

5. *Would you encourage other instructors to use Facebook as a course management system?

6. *Based on your experience in this class, rank the importance of the following skills:
Have not Heard of, Somewhat Very
heard of not relevant useful useful

Finding search terms
Ability to write citations
Understanding of Library of Congress classification system
Familiarity with ZSR library
Performing comprehensive searches
Automating research via search alerts
Keeping resources in EndNote
Using print resources
Using electronic resources
Using social network sites
Knowledge of emerging technologies
Ability to distinguish scholarly versus popular publications
Ability to distinguish types of resources
An understanding of the research process
Ability to evaluate information resources

7. *Based on your experience with Facebook in this course and Blackboard in other courses, which course tool would you rather use?
8. *What did you think about using Facebook to create and submit assignments?
9. *If you have a preference between Facebook and Blackboard, can you tell us why you would prefer one tool over the other?
10. *Rate the usefulness of the class topics:

<table>
<thead>
<tr>
<th>Definition of IL</th>
<th>Orientation to Facebook</th>
<th>Defining the research process</th>
<th>Selecting and refining a research question</th>
<th>Social software overview</th>
<th>E-mail alerts/RSS feeds</th>
<th>Resource evaluation</th>
<th>Differentiating scholarly and popular resources</th>
<th>Finding Web resources</th>
<th>Remix culture and citations</th>
<th>Using EndNote</th>
<th>Information organization/searching</th>
<th>Using library databases</th>
<th>Privacy issues</th>
<th>Group presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not relevant to class</td>
<td>Somewhat useful</td>
<td>Very useful</td>
<td></td>
</tr>
</tbody>
</table>

11. *Do you have any other comments or suggestions for future courses?