SHAPE INFLUENCE IN MEDICAL IMAGE SEGMENTATION WITH APPLICATION IN COMPUTER AIDED DIAGNOSIS IN CT COLONOGRAPHY

By

Haiyong Xu

A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRDUATE SCHOOL OF ARTS AND SCIENCES

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY Biomedical Engineering

May 2011

Winston-Salem, North Carolina

Approved By:

Peter Santiago II, Ph.D., Advisor and Chairman

Examinining Committee:

Yaorong Ge, Ph.D.
Robert J. Plemmons, Ph.D.
H. Donald Gage, Ph.D.
James J. Perumpillichira, M.D.
ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Peter Santago, who has guided me to the interesting and challenging research field of pattern recognition and medical image processing. This dissertation would not have been possible without his constant support on my research interests and inspiring discussions. I believe his emphases on high quality and significant clinical impacts make me a better engineer.

I would like to thank Dr. Yaorong Ge for the fruitful discussions on technology and methodology. His experience and expertise on CT Colonography helped me find effective ways in solving many issues in my research.

The other members of my advisory committee, Dr. Robert Plemmons, Dr. H. Donald Gage, and M.D. James Perumpillichira have each provided valuable insights and comments. Thanks to Dr. Plemmons for his lectures and discussions on numerical analysis in mathematics. Dr. Gage and M.D. Perumpillichira deserve many thanks for their efforts in reading CT Colonography studies.

I am grateful for all the faculty and staff in the biomedical engineering department for their assistance. Special thanks to my colleagues working on the CTC project at Virginia Tech. Dr. Christopher Wyatt is a guru in the advanced image processing field and made considerable contributions to my research. Thanks to Dr. Jung Wook Suh and Yuan Shen for their work upon which I can start my research.

On a more personal note, I would like to thank my wife, Xiaolu, who believed in me and wholeheartedly supported me in my Ph.D. study. My lovely daughter, Claire, brought so many laughs to my life.
TABLE OF CONTENTS

LIST OF TABLES ... v
LIST OF FIGURES ... vi
LIST OF ABBREVIATIONS .. vii
ABSTRACT .. viii

Chapter 1 Introduction ... 1
 1.1 Problems and Significance .. 1
 1.2 Specific Aims ... 2
 1.3 Research Overview .. 4
 1.4 Novelty and Contribution .. 5

Chapter 2 Background ... 7
 2.1 Colorectal Cancer and Early Detection ... 7
 2.2 Current Research Status of CTC CAD ... 12
 2.2.1 Rationale for CTC CAD .. 12
 2.2.2 Research topics in CTC CAD ... 13
 2.2.3 Research groups ... 17
 2.3 Image Segmentation and Shape Prior Influence ... 18
 2.3.1 Interactive segmentation techniques ... 19
 2.3.2 Active contour models and level set methods .. 20
 2.3.3 Shape model based image segmentation .. 23

Chapter 3 Polyp Clustering ... 27
 3.1 Introduction ... 27
 3.2 Method ... 28
 3.2.1 Score polyps ... 29
 3.2.2 Cluster polyps into groups ... 30
 3.2.3 Align polyps in each group ... 32
 3.2.4 Reassign polyps to a different group ... 36
 3.3 Results ... 37
 3.3.1 Cluster polyps into groups ... 37
 3.3.2 Align polyps in each group ... 39
 3.3.3 Reassign polyps to a different group ... 41
 3.4 Conclusion ... 42
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Polyp Segmentation using Shape Prior Models</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>44</td>
</tr>
<tr>
<td>4.2</td>
<td>Method</td>
<td>47</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Construction of shape prior models</td>
<td>47</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Polyp segmentation using shape prior models</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Discussions and Conclusion</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>False Positives Reduction in Polyp Detection</td>
<td>75</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Method</td>
<td>78</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Select and tune a pattern recognition algorithm</td>
<td>78</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Balance two classes in intermediate polyp candidates</td>
<td>79</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Integrate polyp segmentation into polyp detection</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td>82</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusion</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>Patient-level Analysis and Future Directions</td>
<td>88</td>
</tr>
<tr>
<td>6.1</td>
<td>Patient-level Analysis</td>
<td>88</td>
</tr>
<tr>
<td>6.2</td>
<td>Conclusions and Future Directions</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Scholastic Vita</td>
<td></td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 3-1 Scores for reference polyps .. 29
Table 3-2 Morphology score clusters .. 38
Table 3-3 Location score clusters ... 38
Table 3-4 The number of polyps in each polyp group after k-means clustering 39
Table 3-5 Hausdorff distances for aligned polyps ... 41
Table 3-6 Hausdorff distances in a polyp group ... 42
Table 5-1 Pattern recognition algorithms selection and tuning 79
Table 5-2 Top classifiers according to different ranking criteria 83
Table 6-1 Potential patient-level, aggregated polyp features 89
Table 6-2 Example results in feature discovery and selection 90
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research topics in this dissertation</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Four morphologic types of polyp</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Sessile polyps on different locations</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Extraction of a polyp region</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Histogram of polyps’ morphology score and location score</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Polyp surfaces before alignment</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Polyp surfaces after alignment</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Overlaid polyps before and after alignment</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>The boundary between a polyp and its surrounding colon tissues</td>
<td>45</td>
</tr>
<tr>
<td>4.2</td>
<td>An example of a level set image</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>An example of a shape prior model with three modes</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Illustration of the two forces in the evolution of a level set function</td>
<td>52</td>
</tr>
<tr>
<td>4.5</td>
<td>Four steps in segmenting a corpus callosum using ShapeGAC</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Five steps in segmenting a simulated polyp</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>An example of weak edge leakage using the modified ShapeGAC</td>
<td>54</td>
</tr>
<tr>
<td>4.8</td>
<td>An object with weak edges</td>
<td>55</td>
</tr>
<tr>
<td>4.9</td>
<td>Extract a polyp surface from a colon surface</td>
<td>65</td>
</tr>
<tr>
<td>4.10</td>
<td>Six training polyps used in constructing a shape prior model</td>
<td>66</td>
</tr>
<tr>
<td>4.11</td>
<td>Minimization of the objective function in ShapeRegistrationCV</td>
<td>67</td>
</tr>
<tr>
<td>4.12</td>
<td>Segmentation results of 19 polyps</td>
<td>71</td>
</tr>
<tr>
<td>4.13</td>
<td>Segment polyp surfaces with different initial positions.</td>
<td>72</td>
</tr>
<tr>
<td>4.14</td>
<td>User interface of the CTCCAD module in 3D Slicer</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Examples of three intermediate polyp candidates</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>A mean polyp surface overlaid with a segmented polyp surface</td>
<td>82</td>
</tr>
<tr>
<td>5.3</td>
<td>Classification results from random oversampling and SMOTE</td>
<td>84</td>
</tr>
<tr>
<td>5.4</td>
<td>Illustration of the new features</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Potential classifications of patient-level features</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Plot of minimum centerline distance to the lumen</td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAM</td>
<td>Active Appearance Model</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>ASM</td>
<td>Active Shape Mode</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the ROC Curve</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Diagnosis</td>
</tr>
<tr>
<td>CRC</td>
<td>Colorectal Cancer</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>CTC</td>
<td>CT Colonography</td>
</tr>
<tr>
<td>DFB</td>
<td>Distance from Boundary</td>
</tr>
<tr>
<td>DFR</td>
<td>Distance from Rectum</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>EC</td>
<td>Electronic Cleansing</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation Maximization</td>
</tr>
<tr>
<td>GAC</td>
<td>Geodesic Active Contour</td>
</tr>
<tr>
<td>GPA</td>
<td>Generalized Procrustes Analysis</td>
</tr>
<tr>
<td>GVF</td>
<td>Gradient Vector Flow</td>
</tr>
<tr>
<td>ITK</td>
<td>Insight Segmentation and Registration Toolkit</td>
</tr>
<tr>
<td>MAC</td>
<td>Magnetostatic Active Contour</td>
</tr>
<tr>
<td>MAP</td>
<td>Maximum a Posteriori</td>
</tr>
<tr>
<td>MTANN</td>
<td>Massive Training Artificial Neural Network</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PVE</td>
<td>Partial Volume Effect</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>SMOTE</td>
<td>Synthetic Minority Over-sampling Technique</td>
</tr>
<tr>
<td>SVMs</td>
<td>Support Vector Machines</td>
</tr>
<tr>
<td>VTK</td>
<td>Visualization Toolkit</td>
</tr>
<tr>
<td>WEKA</td>
<td>Waikato Environment for Knowledge Analysis</td>
</tr>
</tbody>
</table>
ABSTRACT

Haiyong Xu
SHAPE INFLUENCE IN MEDICAL IMAGE SEGMENTATION WITH APPLICATION IN COMPUTER AIDED DIAGNOSIS IN CT COLONOGRAPHY

Dissertation under the direction of
Peter Santiago II, Ph.D., Professor of Biomedical Engineering

Computer-aided diagnosis (CAD) is a procedure in medicine that assists radiologists or physicians in the interpretation of medical images. The application of CAD in screening colorectal cancer (CRC) has been studied for more than two decades. CRC is the second most deadly form of cancer in men and women in the United States. Nearly all CRC arises from polyps and is preventable if polyps are removed in their early stage. Recent researches show that radiologists demonstrated higher accuracy in finding polyps with CAD than without CAD. In this dissertation, we review the current status of CAD research in CT Colonography (CTC) and propose a new method to segment and detect polyps in CTC CAD.

Advanced polyp segmentation and detection methods can improve the cost effectiveness of CTC by reducing the time used by radiologists in examining CTC studies. With polyp segmentation, we can characterize a polyp by its size, height, volume, and texture, all of which can be computed automatically. And this information is valuable in discriminating polyps from false positive detections such as haustral folds, residual stool, and the rectum tube.

We propose a model-based approach to segment and detect polyps. Initially, a number of manually segmented polyps are aligned to remove the translation, rotation, and scaling effects. A polyp shape model is constructed using the aligned polyps, among which the shape variances are captured by principal component analysis. A model-
based registration method is employed to transform and deform the polyp shape model in order to match a polyp in a CTC study. In the final step, a polyp surface is identified by a deformable registration. We evaluated our segmentation results by comparing them to manually segmented polyp surfaces. The dice coefficient, which indicates the overlap ratio, is 84.5%±3.7 for 19 polyps in 12 patients. In order to improve the polyp detection in CAD, we derived a new feature, the magnitude of deformation from a polyp shape model to a polyp candidate, from the segmentation results. Since we have both a polyp model and a segmented polyp candidate, more features can be extracted to reduce false positive detections in the future.

We contributed to the CTC CAD field as follows: 1) devised a new approach to segment and detect polyps based on polyp shape models; 2) promoted the open source development in CTC CAD by utilizing 3D Slicer, ITK, and VTK; 3) improved the classification system design in CTC CAD by comparing a group of classifiers and tuning their parameters.
Chapter One

Introduction

1.1 Problems and Significance

Colorectal cancer (CRC) is the third most common and the second most deadly form of cancer in men and women in the United States [1]. Colonoscopy can be used for screening and is the follow-up procedure for any other screening test that indicates the presence of CRC or adenomatous polyps. There are, however, significant drawbacks to colonoscopy [2]. Unlike colonoscopy, computed tomographic colonography (CTC) is a minimally invasive screening technique for CRC and avoids many of the problems associated with colonoscopy [2]. Computer-aided diagnosis (CAD) in CTC is an active research topic which is designed to reduce the interpretation time and sensitivity variation among readers in CTC [3].

CAD for CT Colonography (CTC CAD) is maturing rapidly. In the laboratory setting, sensitivities for detecting clinically significant polyps are as high as 85-100% with less than 10 false positives per patient [4-10]. These sensitivities reach or exceed those achieved by radiologists. Although high sensitivity is achievable in CTC CAD, there are many challenges ahead and new and useful results are anticipated in the near future. The major challenges are in the areas of increased sensitivities for small and flat polyps, decreased false positive rate, electronic cleansing for the unprepared colon, and matching of detections on the supine and prone exams. The second challenge, decreased false positive rate, is addressed in this dissertation.

A relatively large number of false positive detections in CTC decrease its cost effectiveness. In CTC CAD, a large number of false positives make radiologists spend
more time on examining false positive polyp candidates, which may hinder rather than assist them in detecting polyps. Additionally, one common type of false positives in CTC CAD is the rectum tube, which can be easily recognized by a radiologist as false positives. Including many easily recognized false positives in CTC CAD may make radiologists less confident in it as a helpful tool. Therefore, high false positive rate prevents the wide application of CTC CAD in clinical environment.

Reducing false positive detections in CTC CAD can help radiologists in making optimal patient referral, which is the primary goal of CTC as a screening technique for CRC. The purpose of CTC CAD is to automatically locate possible polyps (polyp candidates), annotate CT images, and present a list of locations of polyp candidates. A radiologist can review the list of polyp candidates and make the final decision of a colonoscopy referral. Less false positives in CTC CAD can reduce radiologists’ burden in unnecessary examination of false positives and make them focus on true positive detections, both of which lead to more accurate patient referral. And improving the referral accuracy can increase the cost effectiveness of CTC. As a consequence, CTC would be widely adopted as an effective screening method to reduce the incidence and mortality of CRC. A number of recent researches evaluated the performance of radiologists assisted by CTC CAD [11-16]. And the results show that radiologists demonstrated high accuracy with CTC CAD than without CTC CAD.

1.2 Specific Aims

We propose a new method to reduce false positives in CTC CAD. The idea is that a polyp-looking surface can be obtained if a polyp candidate is a true positive detection. Otherwise, for a false positive detection, the attempt to retrieve a polyp surface in the polyp candidate region will fail. Specifically, we devise a polyp segmentation method that can segment a polyp boundary in a polyp candidate region.
And features derived from the polyp segmentation results are used to reduce false positives.

Specific Aim 1: Incorporate prior knowledge of polyp shape in polyp segmentation.

Polyp segmentation identifies the polyp boundary in a polyp candidate region. With a polyp boundary, a variety of information of a polyp can be obtained, for example, the polyp size and pixels inside a polyp. However, polyp segmentation is a challenging task because the boundary between a polyp and its surrounding colon tissues is obscure. This means the boundary is difficult to be obtained based on CT images signal alone. We propose a method that incorporates the prior knowledge of polyp shape to address this problem. In this method, manually segmented polyps are used to construct shape prior models which represent shape variances in polyps. These models are then integrated into a polyp segmentation process to help identifying the boundary between a polyp and its surrounding colon tissues.

Specific Aim 2: Reduce false positives using new features derived from polyp segmentation results.

The polyp segmentation generates a polyp boundary for each polyp candidate. For a true positive candidate, the shape of the boundary is similar to a polyp which is embedded in a shape model. For a false positive candidate, however, there is no polyp in the candidate region and the shape of the boundary is apparently different from a polyp. A number of features derived from a boundary in a segmentation result can be used to measure the similarity between the boundary and a polyp in a model. Also, additional features derived from the pixels inside or outside a boundary can be obtained. These new features, which are not available in current CTC CAD, are complementary to existing features to further reduce false positive detections in CTC CAD.
1.3 Research Overview

Figure 1.1 highlights the research topics in this dissertation. Chapter two reviews the background of CTC CAD and the image segmentation methods. In chapter three, we conduct an experiment to cluster polyps into several groups such that all polyps within a group are similar in terms of shapes. At first, polyp surfaces are visually examined by three observers and the morphology and location scores are obtained for each polyp. Then, polyps are clustered using the K-means algorithm according to their scores. Since the scores cannot precisely describe polyp shapes, we align polyps within a group and...
refine a group by removing polyps which cannot be aligned with other polyps in the group. A refined polyp group is used in the polyp segmentation.

In chapter four, principal component analysis (PCA) is applied to a refined polyp group to generate a polyp model. Then a model-based registration method is employed to register the polyp model and CTC images in order to overlap the model on the images. Concurrently, Chan-Vese model is used to segment colon surface in the CTC images. Further, a deformable registration algorithm, which takes the outcomes of the model-based registration and the Chan-Vese model as inputs, is used to generate a polyp surface. The deformation registration also generates a deformation field which is used in the polyp detection to derive new features.

In chapter five, a classifier is trained to reduce false positives in intermediate polyp candidates. Two questions in the classification algorithms are addressed: 1) how to select an appropriate algorithm and set its parameters for a particular classification problem; 2) how to handle extremely unbalanced training data. In addition, new features that are derived from the deformation field are evaluated in reducing false positives in our CTC CAD.

Chapter six summarizes our initial work on patient-level analysis using two types of features: aggregated polyp features and colon shape features. We conclude the dissertation by discussing the future research directions on polyp segmentation, polyp detection, and patient-level analysis.

1.4 Novelty and Contribution

To the best of the author’s knowledge, this research is the first attempt in CTC CAD field that incorporates the prior knowledge of polyp shape in segmenting polyps. Although there are several publications on polyp segmentation methods, the field of how to effectively integrate the polyp segmentation and polyp detection into one process has
not been explored. Therefore, this is also the first systematic study in utilizing the polyp segmentation result to reduce false positive detections in CTC CAD.

In this dissertation, the following contributions have been made to the CTC CAD field: 1) devised a new approach to segment and detect polyps based on polyp shape models; 2) promoted the open source development in CTC CAD by utilizing 3D Slicer, ITK, and VTK; 3) improved the classification system design in CTC CAD by comparing a group of classifiers and tuning their parameters.
Chapter Two

Background

The use of CT images as the screening tool for CRC was proposed as early as 1980 [17]. Over a decade later the term “virtual colonoscopy” was formally introduced in [18]. Since then, great advances in software and hardware have occurred and a number of clinical trials have been conducted to assess the feasibility of CTC as the screening technique. In this chapter, we provide an overview of the screening techniques for CRC and review the current research status of CTC CAD. Since one of the technical challenges in this research is the polyp segmentation using shape prior models, we review the state of the art image segmentation techniques with emphasis on the shape prior influence in medical image segmentation.

2.1 Colorectal Cancer and Early Detection

CRC is the third most common and the second most deadly form of cancer in men and women in the United States [1]. CRC largely can be prevented by the early detection and removal of adenomatous polyps, and survival is significantly better when colorectal cancer is diagnosed while still localized [2]. Modern screening techniques for CRC can reduce the incidence and mortality of CRC through the detection and removal of early-stage adenocarcinomas and adenomatous polyps [2]. Colonoscopy is the current gold standard for the diagnosis for CRC [19]. CTC is a minimally invasive screening technique and avoids many of problems associated with colonoscopy [2]. A large amount of efforts have been made in CTC CAD by several research institutions and business entities around the world to improve the CTC’s efficacy as the screening tool for CRC [2].
CRC arises from mucosal polyps. The two most common histological types of polyp are hyperplastic and adenomatous. According to the traditional adenoma-to-carcinoma sequence, nearly all colorectal cancers arise from adenomatous polyps. Clinical studies suggest that over 95% of colorectal carcinomas arise from those slow-growing adenomatous polyps [20]. The progression of an adenoma into a carcinoma is predicted to take about 10 years [17]. Consequently, polypectomy of colorectal adenomas was shown to reduce the incidence of CRC by nearly 80% [21]. Progression of an adenoma into cancer can be predicted by size, villous histology, degree of dysplasia, and inherited or environmental factors [20]. The risk of a polyp being cancerous increases as the size of the polyp increases. A study found that there is only a 1.3% risk that a polyp less than 10 mm in diameter is a carcinoma [17]. In comparison, a polyp 10 mm to 20 mm in size has a 9.5% chance of malignancy and a polyp greater than 20 mm has a 46% chance of malignancy [17]. Polypectomy of polyps that are at least 5 mm, 6mm to 8 mm, or 10 mm has been suggested by various experts [22-24].

CRC screening techniques

The goal of cancer screening is to reduce mortality through a reduction in incidence of advanced disease. Today, there are a range of options for CRC screening in the average-risk population, with current technology falling into two general categories: stool tests, which include tests for occult blood or exfoliated DNA; and structural exams, which include flexible sigmoidoscopy, double-contrast barium enema, colonoscopy, computed tomographic colonography, and wireless capsule endoscopy. Stool tests are best suited for the detection of cancer, while the structural exams can achieve the dual goals of detecting adenocarcinoma as well as identifying adenomatous polyps. These tests may be used alone or in combination to improve sensitivity or to ensure a complete examination of the colon.
FOBT - Stool blood test is conventionally known as fecal occult blood test (FOBT). Blood in the stool may originate from CRC or larger (>1 to 2cm) polyps. Despite its low sensitivity and specificity, FOBT is a cost-effective screening method because of the low unit expense, noninvasive process, and easy portability. A positive FOBT should be followed by colonoscopy. If the test is negative, it should be repeated annually.

sDNA - Stool DNA test (sDNA) tests stool for the presence of known DNA alterations in the adenoma-carcinoma sequence of colorectal carcinogenesis. Because no single gene mutation is present in cells shed by every adenoma or cancer, a multitarget DNA stool assay is required to achieve the adequate sensitivity. An sDNA designed specifically for CRC and is commercially available is ProgenePlus from EXACT Sciences, Marlborough, Massachusetts [25]. Since sDNA sampling is noninvasive and lacks physical harm, patient and provider acceptance of this technique appears to be high. A clear limitation of sDNA is that test sensitivity is based on a panel of markers that appears to identify the majority of but not all CRC. Another limitation is that the unit cost of the current test is much higher than the other stool tests.

FSIG - Flexible sigmoidoscopy (FSIG) is an endoscopic procedure that examines the lower half of the colon lumen, which includes only rectum, sigmoid, and descending colon. It is typically performed without sedation and with a more limited bowel preparation than standard colonoscopy. The effectiveness of FSIG depends on the completion of a high quality exam. The chief limitation of FSIG is that it does not examine the entire colon. Therefore, the protective effect of FSIG is primarily limited to the portion of the colon examined. Patients with positives testing findings need to be followed up with colonoscopy. And if the test is negative, it should be repeated every five years.

DCBE - The double-contrast barium enema (DCBE) evaluates the colon in its entirety by coating the mucosal surface with high-density barium and distending the
colon with air. Multiple radiographs are acquired while varying the patient position during
direct fluoroscopic evaluation and with conventional radiographic equipment. The
potential benefits derived from the DCBE are that it evaluates the entire colon in almost
all cases and can detect most cancers and the majority of large polyps. However, the
acceptability of DCBE may be limited by the requirement for extensive colonic
preparation, and low sensitivity for significant adenomatous polyps. The use of DCBE for
CRC screening in average-risk adults is declining [26, 27] due to its labor-intensive
nature, the low reimbursement rate, and greater interest in newer and more complex
technologies such as computed tomography (CT).

Colonoscopy - Colonoscopy is one of the most commonly performed medical
procedures in the United States [2]. It allows direct inspection of the entire of colon and
same-session biopsy sampling or definitive treatment by polypectomy in the case of pre-
cancerous polyps and some early-stage cancers. In colonoscopy, patients generally
adopt a liquid diet one or more days before the examination, followed by either ingestion
of oral lavage solutions or saline laxatives to stimulate bowel movements until the bowel
is clean. The principal benefit of colonoscopy is that it allows for a full structural
examination of the colon and rectum in a single session and for the detection colorectal
polyps and cancers accompanied by biopsy or polypectomy. All other forms of screening,
if positive, require colonoscopy as a second procedure. Bowel preparation is a critical
element in the accuracy and cost-effectiveness of screening with colonoscopy, however,
is also the biggest concern by patients [19]. Other limitations of colonoscopy include the
need for patient sedation, incidence of perforation, failed cecal intubation, incompletion
of the procedure, and considerable polyp miss rate [2, 17, 19]. At present, colonoscopy
every 10 years is an acceptable option for CRC screening in average-risk adults
beginning at age 50 years [2].
CTC - Computed tomographic colonography (CTC), also referred as virtual colonoscopy, is a minimally invasive imaging examination of the entire colon and rectum. CTC uses CT to acquire images and employs advanced 2D and 3D techniques for interpretation. Adequate bowel preparation and gaseous distention of the colon are essential to ensure a successful examination, which is also a limitation that may decrease patient adherence. Several clinical improvements in patient preparation, technical advances in CT, and new developments in evaluation software have allowed CTC to develop into a powerful diagnostic tool [28]. Despite its relatively early in utilization, recent studies have demonstrated the efficacy of CTC in [23], [29], and [30].

The management of CTC findings is an important part of the CTC screening technique. At this time, there is consensus that all patients with one or more polyps >=10 mm or three or more polyps >=6 mm should be referred for colonoscopy [31]. Patients with one or two 6 to 9 mm polyps identified on CTC are also recommended to colonoscopy. Patients who decline referral to colonoscopy or who are not good candidates for colonoscopy should be offered surveillance with CTC. Screening of average-risk adults with CTC should commence at age 50 years. The interval for repeat exams after a negative CTC should be five years.

WCE - Wireless Capsule Endoscopy (WCS) is recently established methodology that offers gastroenterologists the capability to examine the interior of the small intestine and colon with a capsule. At one end of the capsule, there is a miniaturized color camera and an optical dome with light-emitting diodes (LEDs). The camera can operate up to 8~10 hours and capture more than 50,000 images, which are then transmitted wirelessly to a storage device worn by a patient. It is important to mention that WCE technology has been used in colonoscopy (PillCam Colon from Given Imaging, Ltd., Israel). However, the viewing and evaluation of each WCE video is a time-consuming process,
which makes the WCE methodology not widely efficient and acceptable for gastroenterologists [32].

There are pros and cons to having a range of options for CRC screening. The primary barriers to screening are lack of health insurance, lack of physician recommendation, lack of awareness of the importance of CRC screening, and different preferences and resistance to a particular technology in the population. These challenges have been discussed in the past and they still are with us today.

2.2 Current Research Status of CTC CAD

2.2.1 Rationale for CTC CAD

Although CTC is emerging as a new non-invasive technique for CRC screening, three factors limit the widespread utilization of this technique: (1) the need for colon cleansing, (2) the readers’ expertise required for interpreting the examination, (3) and the unknown diagnostic performance when applied in a mass screening program [3]. CTC CAD addresses some of these issues of CTC.

The primary goal of CTC CAD is to locate possible polyps automatically and present a list of locations of possible polyps to a reader. The secondary goal is to improve per-polyp and per-patient sensitivity, to reduce interpretation time and to decrease inter-observer variability with fewer false positives. With the help of CTC CAD, CTC detection may provide some reliable improvement by bring high probability polyp sites to the attention of a reader, or even by using CTC CAD alone. Computer algorithms in CTC CAD are intrinsically immune to fatigue and experience variations, which are major subjective reasons for inter- and intra-observer variations. In addition, CTC CAD can reduce the CTC cost by shortening the interpretation time. Thus, with wide
application of CTC CAD, CTC may become a cost-effective method for colorectal cancer screening.

2.2.2 Research topics in CTC CAD

A typical CTC CAD is a multi-step procedure consisting of four steps: segmentation of colonic wall, generation of intermediate polyp candidates, reduction of false positives, and presentation of detections. The rest part in this subsection reviews the current research status in these four fields. Other research topics that do not fall into these fields, such as electronic cleansing, registration, etc., will be reviewed at the end of this section.

Segmentation of colon wall – The task of extracting the colon wall from the abdomen CT images is to prevent CTC CAD from processing non-colon tissue in following steps. Several fully automated methods for colon segmentation have been developed in [33-38]. One of the most difficult challenges in segmenting colon is the partial volume effect (PVE). In [39], authors modeled PVE from statistical perspective. Authors in [40] proposed an expectation maximization (EM) approach to estimate tissue mixture percentages within each image voxel. In [41], authors presented a novel method to model PVE and automatically classify CT image into material fractions by a scale and rotation invariant edge model. This method uniquely combines robustness to noise, global signal fluctuations, anisotropic resolution, non-cubic voxels, and ease of use. A byproduct of colon segmentation is to generate colon centerline which is used in fly-through examination by radiologists. Automated generation of the colon centerline is another challenge in CTC CAD. A method that determines a sub-voxel-level centerline has been developed in [42]. In this method, the problem of collapsed portions of the colon, where the lumen segmentation fails to produce a continuous centerline, is fixed through segmentation of the outer wall of the colon. And the loops in the colon caused
by over-distention are detected and removed. Therefore, a complete centerline is generated and can be used to automatically determine the amount of distention throughout the colon and aid in CTC fly-through examination.

Generation of intermediate polyp candidates – After the extraction of colon, possible polyp regions, called intermediate polyp candidates, are detected based on geometric and/or photometric features characterizing these lesions. Various strategies have been devised to identify possible polyp regions and the most popular approach is based on curvature related features, such as shape index and curvedness proposed in [43]. In [44], the authors used a rule based filter on geometric features to generate possible polyp regions. In [45], the authors generated candidates by searching for convex regions and fitting a sphere to the surface normal field. Recently, several new approaches have been proposed in identifying polyp candidates including the detection of protrusion by second principal curvature flow, projection features, and features extracted from polyp segmentation. The method in [46] works by locally deforming the colon surface until the second principal curvature becoming smaller than or equal to zero. The novelty of this approach is that it removes protruding elements from the underlying data while leaving the highly structured folds intact. Another new method in [47] is to project a volume data of a polyp candidate region into a 2D image. And features are extracted from both gray and color projection images. In this approach, the intensity distribution or texture inside a polyp candidate region can be obtained to differentiate false positives from true ones. A couple of polyp segmentation methods have been proposed in order to extract features based on a polyp boundary [48-50]; A deformable model based approach was adopted in [48, 49] to identify a polyp boundary and a multi-staged probabilistic binary classification approach was employed in [50] to automatically segment polyps.
Reduction of false positives – After generation of intermediate polyp candidates, there are a large number of false positives in those candidates. This is because a high sensitivity is desired in order to not miss polyps in the candidates, and usually a low specificity is the consequence of high sensitivity at this step in CTC CAD. It is important to reduce the number of false positives as much as possible while maintaining a high sensitivity. Major sources of false positives in CTC CAD include haustral folds, residual stool, rectal tube, ileocecal valve, and extra-colonic structures such as small bowel and stomach. Various methods have been developed to reduce false positives, almost all of which employed pattern recognition algorithms. A variety of features have been employed that are extracted from a cluster of voxels, volumetric texture, CT attenuation, wavelet coefficients, projection [47], and topographic height map. And a number of pattern recognition algorithms have been utilized in CTC CAD, for example, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), artificial neural network (ANN), support vector machines (SVMs), ensemble of ANN, and SVMs. Several methods were designed to reduce a specific type of false positives such as rectal tube [51, 52] and ileocecal valve [53]. With the help of advanced methods in false positive reduction, current state of the art CAD can reach sensitivity as high as 85-100% for clinically significant polyps with less than 10 false positives per patient [15].

Presentation of detections – After reducing false positives, the CTC CAD presents final polyp candidate as a list to a radiologist. Usually, in the presentation, 2D images from CTC studies together with 3D volumetric representation are displayed to assist users in image interpretation and making a final decision whether it is a true positive or a false positive. The 2D images give radiologists an opportunity to assess the native information in a CT study, such as CT pixel intensity. And the 3D representation provides an intuitive way for radiologists to visually examine the polyp candidate region. More information, for example, distance to anus, linear size and volume measurement,
are useful features in CTC CAD to assist radiologists in making a patient referral decision. The remaining task of a radiologist is to either verify (true positives) or reject (false positives) polyp candidates.

Electronic cleansing – Electronic cleansing (EC) is an emerging technique for removal of tagged fecal materials in fecal tagging CTC images after the image acquisition, and thus to avoid the physical bowel cleansing prior to CT scanning. Fecal tagging is usually done by oral administration of a positive contrast agent (barium or iodine) before CTC. EC can greatly relieve patients from discomfort and inconvenience associates with cathartic preparation, therefore, to increase patients’ preference to CTC. In EC, challenges such as soft tissue structure degradation and pseudo enhancement of soft tissue need to be addressed. In [54], the authors devised a structure-analysis-cleansing method that uses local morphologic information to enhance fold-like and polyp-like structures which are submerged in the tagged materials. Recently, authors in [55] and [56] independently developed EC schemes that make use of dual-energy CT images and demonstrated that non-cathartic dual-energy CTC has potential to improve the quality of EC.

Other major research topics in CTC CAD include registration of supine and prone CTC images, colon visualization, and colon flattening. Registration between supine and prone CTC images can increase sensitivity of polyp detection [57] since some polyps may be submerged in residue in one study. In [58], the authors proposed a method based on feature matching of colon centerlines and non-rigid registration of lumen surfaces which are represented as level set functions. A 3D visualization technique for CTC, called fly-over navigation, was proposed in [59]. In fly-over navigation, which is different from fly-through mode, the colon is split along its centerline into two halves, and each half is assigned a virtual camera that performs virtual fly-over navigation. This new technique can visualize nearly 100% of the colon’s inner surface, and reduce
radiologists’ interpretation time by ~50%. Colon flattening technique is to cut colon along longitude and map the 3D inner surface to a 2D domain. In [60], the authors proposed a shape preserving flattening method and integrated the flattened colon into CTC CAD to assist 3D navigation. This flattened colon provides users with an overview of the entire colon structure in a single 2D view, ensuring that no regions are missed by radiologists due to folds or other structural obstructions.

2.2.3 Research groups

The Imaging Biomarkers and Computer-Aided Diagnosis Laboratory at NIH, led by Dr. Summers, is one of the most active research groups in CTC CAD. They have presented their work on various areas in CTC CAD integration, classification, polyp database management, polyp size and height measurement, etc.

Dr. Yoshida at Massachusetts General Hospital, together with his previous colleagues in University of Chicago, has made pioneering work in CTC CAD. Now, their research efforts are focusing on the electronic cleansing technique.

A research group at Stony Brook University, led by Dr. Liang and Dr. Kaufman, works on areas such as colon segmentation, feature discovery, polyp detection, and visualization in CTC CAD. Their research work has made a huge contribution in a commercial product called V3D Colon™.

Dr. Suzuki leads a group at University of Chicago to conduct research on computer-aided diagnosis of lesion in the abdomen, thorax, and heart. They applied pattern recognition technique to reduce false positives in CTC CAD. And one of the most important contributions from this group is the massive-training ANNs (MTANN).

Dr. Napel from the Radiology 3D Laboratory at Stanford University has conducted research works on virtual endoscopy in past. Now, most of his research effort
on CTC CAD is related to pre-processing steps, for example, polyp enhancement and image smoothing effect on polyp detection.

A research group, led by Dr. Vliet and Dr. Vos at Delft University of Technology in Netherlands, are working actively in electronic cleansing area [61] and using second principal curvature flow to detect polyps [46].

Mori Laboratory at Nagoya University in Japan has spent several years working on haustral folds detection and teniae coli extraction in order to assist polyp detection in CTC CAD. Their recent research is the registration of supine and prone CT images [62].

CT Colonography Research Group at Wake Forest University, led by Dr. Santiago, and Bioimaging Systems Lab at Virginia Tech, led by Dr. Wyatt, are working together to conduct research on CTC areas as supine and prone CTC images registration, polyp feature extraction, patient level analysis, and image guided colonoscopy.

Beside these research entities, several software companies also contributed to the CTC CAD field through rigorous implementation and pioneering research, for example, iCAD, Viatronics, and Medicsight. On 4 August 2010, VeraLook™ from iCAD became the first CTC CAD product received 510(k) clearance from the FDA [63]. This may improve the effectiveness of CTC as CRC screening technique.

2.3 Image Segmentation and Shape Prior Influence

Segmentation of colon is one of the fundamental problems in CTC CAD, which acts as the pre-step for all following processes such as visualization, feature extraction, and false positives reduction. One of the most challenging tasks in this dissertation is polyp segmentation. Before delving into the details of the proposed method, let us review several image segmentation methods in this section with emphasis on the shape prior influence in medical image segmentation.
Image segmentation is a challenging task and a myriad of methods have been proposed and implemented since 1980s. They fall into two categories: automated and interactive. Several novel interactive segmentation methods made a breakthrough in the last decade. A recent study in liver segmentation from CT images shows that interactive image segmentation methods reach higher accuracy than automated approaches and have a better consistency of segmentation quality [64]. The state of the art techniques in image segmentation area are those methods related to the graph cuts, which is an interactive method, and the active contour models, which is regarded as a semi-automatic or automatic method depending on how the initial position is placed.

2.3.1 Interactive segmentation techniques

An early interactive image segmentation algorithm, called intelligent scissors [65], or live-wire, allows a user to select a region of interest to be extracted using simple mouse clicks. When a user clicks on proximity to an object boundary, a live-wire snaps to and wrap around the object of interest. This provides instant feedback of the segmentation result to users. In its mathematic formulation, Dijkstra algorithm is used to calculate the shortest path between neighboring points. However, in the cases of low contrast or noisy boundaries, the shortest path may shortcut the desired boundary. And the algorithm requires a large number of user interactions to obtain a satisfactory result. Intelligent scissors has been implemented in open source software ITK and GIMP [66, 67].

The graph cuts technique has been developed as a method for interactive segmentation and gained great momentum since its introduction [68]. Similar to the intelligent scissors, graph cuts views the image as a weighted graph. A user marks some nodes as foreground and background and the algorithm performs a max-flow/min-cut analysis to find the minimum-weight cut between the foreground and the background.
Problems with this technique are that it requires a lot of user interactions to achieve desirable segmentation results and it is strongly affected by noises in an image. The grab cuts method extends the graph cuts technique to segment color images and to provide simpler user interaction [69]. However, in grayscale images, which are commonly seen in medical fields, the grab cuts method does not perform well because of its simpler mode of user interaction.

Recently, a novel method, called random walks, has been proposed for performing multi-label, interactive image segmentation [70]. Similar to graph cuts, this algorithm also models an image as a graph and requires users to define a small number of pixels with labels (pre-labeled pixels). The algorithm analytically determines the probability that a random walker starting at each unlabelled pixel will first reach one of the pre-labeled pixels. By assigning each pixel to the label for which the greatest probability is calculated, high-quality image segmentation may be obtained.

In [71], Bai and Sapiro proposed a method that computes weighted geodesic distances from individual pixels to the user provided labels. The labels are roughly placed in foreground and background regions of interest as the graph cuts does. The geodesic distance from these scribbles is calculated to classify pixels. The GeoS algorithm [72] further extends the geodesic framework [71] on improving the processing speed and handle complex energy models. In [73], a common framework for seeded image segmentation algorithms was presented, which yields two of the leading interactive image segmentation methods, graph cuts and random walker, as special cases.

2.3.2 Active contour models and level set methods

For those interactive segmentation methods, such as graph cuts, random walks, and geodesic framework based algorithms, we can obtain satisfactory results through
many user interactions to indicate foreground and background. Given more user interactions, the segmentation result is usually more precise. However, a relatively large number of user interactions in these methods prevent them from being applied in automated segmentation cases. By comparison, active contour models and level set method only require an initial contour to be placed by a user. In several recently proposed level set methods, this initial contour can be automatically placed evenly inside an image. This property of less user interactions makes active contour models and level set method applicable to the automated segmentation scenarios.

The original form of active contour models, or snakes, was proposed by Kass et al. in [74]. This method, which belongs to parametric active contours, evolves a contour based on internal and external forces. The internal forces, which are defined within the contour, are designed to smooth the contour during evolution, and the external forces, which are computed from the segmented image, are defined to move the contour toward desired boundaries. In [75], the authors extended the active contour models to 3D as a balloon model. Three key problems with the initial forms of active contour models are: 1) the contours have difficulties progressing into boundary concavities; 2) the topologic changes are difficult to be handled; 3) the initial contours need to be placed close to the desired boundary in an image.

Several methods have been proposed to address the problem of boundary concavities. The gradient vector flow (GVF) and generalized GVF (GGVF) were devised as a new external force in [76]. This new external force is computed as a diffusion of the gradient vector of a grayscale or binary edge map derived from an image. This GVF and GGVF have a large capture range and are able to move contours into boundary concavities. However, they fail to evolve active contours at saddle points, i.e., the contour is tangent to the GVF force vector. In [77], the authors combined GVF and geodesic active contour (GAC) to evolve contours. By considering the directions of
normalized GVF, the proposed method can continue expand or contract active contours through GAC forces even the contour is tangent to the GVF force vector. A recent method proposed in [78], which is called magnetostatic active contour model (MAC), uses an external force field that is calculated from hypothesized magnetic interactions between a contour and object boundaries. This external force field is calculated as the contour evolves, therefore, MAC provides a *dynamic* force field whereas all previous methods employed a static force field. This method greatly improves the active contour models in capturing the complex geometries and dealing with difficult initializations, weak edges, and broken boundaries. MAC was extended in [79] to include a level set regularization term in order to handle topologic changes.

Another research direction of active contour models is to represent active contours implicitly. Such active contour models are called geometric active contours. Active contours are usually represented as a level set and the method to evolve the implicit active contours is called level set method [80]. In [81], the authors introduced the level set method by modeling the propagation of solid and liquid interface with curvature dependent speeds. In [82], the authors improved the level set method to include an additional speed term to stop the active contours in the vicinity of object boundaries, which is similar to one of the most popular active contour models, geodesic active contours. The authors in [83] proposed the geodesic active contours (GAC) based on the relation between active contours and the computation of geodesics or minimal distance curves. Beside constant and curvature dependent terms in the original level set method, this geodesic formulation introduced a new term to the contour evolution model that further attracts the deforming contour, either inside or outside, to an boundary in an image.

All above level set methods make use of edge information in an image, such as gradient and curvature, to evolve contours. They are called boundary-based level set
methods. In [84], the authors proposed a region-based approach that uses stopping terms based on the Mumford-Shah segmentation formula. In contrast to boundary-based schemes, the region-based approach tends to be less sensitive to noise and have less local minima, both of which make it particularly well-suited in solving medical image segmentation problems.

2.3.3 Shape model based image segmentation

In the previous sections, we discuss a number of image segmentation approaches that use image information to extract boundaries, such as intensity, gradient, curvature, etc. This image information, called low level information, may not be sufficient to generate the desired segmentation in real world applications. For example, in medical images, an object and its background may exhibit similar intensity, the intensity may not be uniform inside an object due to inhomogeneity, and noise or partial occlusion of the object will appear in 2D projections. These situations may mislead those methods, which are entirely based on low level information, to a false segmentation. To address this problem, prior knowledge about the shape of expected objects, called high level information, is introduced in a number of approaches. In these approaches, training samples, which consist of manually segmented objects, are used to build a model. This model usually represents the shape variances from the collection of training samples. During the segmentation of an image, the detected boundaries are constrained by both the image features and the model. The model influence makes the boundary to vary only in ways that have been seen in the training samples. Using this mechanism, problems such as a weak edge between an object and the background, noise, and partial occlusion, can be handled very well by utilizing the shape prior knowledge.

Active shape models (ASM) [85] and active appearance models (AAM) [86] are one of the best known methods in the shape model based image segmentation field. In
ASM, an object or image structure to be segmented is represented by a set of points (landmarks) which are placed manually on each training sample of the object. The point set from different training objects are aligned to minimize the variance in distance between corresponding points. A point distribution model (PDM) is derived by examining the statistics of the position of the landmarks. Using principal component analysis, ASM gives the average positions of the landmarks and has a number of parameters to control several major modes of variation in training samples. To find the structure of interest in an image and delineate its boundary, the search algorithm makes an adjustment along the normal direction toward to the strongest image edge for each point on the current active contour and uses a point set matching algorithm to choose the shape and pose parameters. AAM includes texture information inside of the current active contour in searching object boundaries. Since their introduction, ASM and AAM became the most popular methods in the statistical shape model area and inspired a number of variant forms.

In [87], the authors proposed a novel method that combines the shape prior with level set method. Similar to ASM and AAM, the proposed method builds a shape prior model using principle component analysis. However, this method employs geometric contours, i.e. level set, rather than parametric contours which are used in ASM and AAM. This eliminates one of the most notable problems in ASM and AAM – point correspondence. In this proposed method, the authors extended the level set method by incorporating shape information into the evolution process. To segment a structure from an image, the algorithm evolves active contours based on image gradients and curvature as the level set method does, and transforms and deforms the shape model based on a maximum a posteriori (MAP) estimate of shape and pose, which comes from the shape prior model.
Tsai et al. [88] proposed a shape based approach to segment medical images using level set method. Different from [87] which uses the boundary-based level set method, this approach uses the region-based level set method. The region-based approach enjoys a number of properties over boundary-based technique, including robustness to noise and initial contour placement. The authors integrated the shape prior information into the level set equation, therefore, provided one functional to be optimized. This is another difference to the method in [87] which has two terms to be optimized sequentially: one is the energy functional defined in the level set method and the other is MAP estimate of shape and pose.

PCA is used to model shape variances in all shape model based image segmentation methods described above. The authors in [80] pointed out the limitation of PCA in modeling shape priors: the level set representation is not a linear space and the first few components are not sufficient to capture the variation in the space of the embedded contours. Several alternative methods have been proposed to model the shape variances. For example, a linear shape representation on the basis of harmonic embedding has been studied in [89]; variational integrations of the shape priors based on the assumption of Gaussian distribution was proposed in [90, 91]; a non-parametric density estimation method to model shape distributions was developed in [92]; and dynamic statistical shape priors for implicit shape representations were proposed in [92]. It is an ongoing research to discover a more effective way to capture shape variances in training objects.

Several successful applications of shape model based medical image segmentation techniques were reviewed in [64]. As the authors mentioned in the review that the shape based segmentation techniques are mostly developed for research purposes and there are no commercial products that employ 3D statistical shape models. Several challenges, for example, how to build shape models on a large number of
training images and improve the robustness of the searching algorithm, need to be solved in order to increase acceptance of this approach in clinic and lead to wider application and benefit.
Chapter Three

Polyp Clustering

We propose a model-based polyp segmentation and detection method. This model is constructed using polyps confirmed in CTC and colonoscopy. Based upon their morphologic type and location, polyps present different shapes, which necessitates the use of multiple models. It is difficult but important to determine the number of models and to cluster polyps into groups such that polyps in each group could be used for constructing a model. In this chapter, we describe an experiment that is designed to cluster polyps into groups and then discuss a method that refines the polyp groups to include similar polyps only in terms of their shapes. This results in polyp groups upon which we can build models.

3.1 Introduction

Polyps have different morphologic types such as flat, sessile, pedunculated, and large mass (Figure 3.1). Polyps are also growth of tissues in different locations including colon surface, bottom of a fold, side of a fold, and top of a fold (Figure 3.2). The shape of a polyp varies with its morphologic type as shown in Figure 3.1. Moreover, polyps of the same morphologic type have different shape based upon their locations. We seek a method to categorize polyps into different groups such that all polyps within a group are similar in terms of their shapes.

We choose to categorize polyps into several groups for two main reasons. First, polyps with different morphologic types and locations may have different shape. If we put all polyps into one group and build a shape model based on them, the shape variance among this model will be large. Such a model with large shape variance has many
parameters to control its shape and manipulating these parameters to obtain a certain shape is extremely difficult. Conversely, we can build a model for each polyp in our polyp database. But this approach would result in too many models, and how to select an appropriate model to segment and detect a polyp would become another problem. This is similar to the overfitting problem in pattern recognition. To address these problems, we designed an experiment to analyze polyp shape in order to develop a method that can cluster polyps into several groups each having small shape variance. At the same time, this method should not generate too many groups. The goal of polyp shape analysis is to cluster polyps in order to minimize the intra-group shape variance while maximizing the inter-group shape variance. This can result in appropriate polyp models for the segmentation process.

Figure 3.1 Four morphologic types of polyp: flat, sessile, pedunculated, and large mass (from left to right). The first three types of polyps are scored from 1 to 10 as shown in Table 3-1.

Figure 3.2 Sessile polyps on different locations: colon surface, fold bottom, fold side, fold top (from left to right). These are scored from 1 to 10 as shown in Table 3-1.

3.2 Method

We have two datasets of CTC studies in which polyp locations in the DICOM coordinate system were provided by radiologists. The WFU dataset contains 35 polyps
and the WRAMC dataset contains 75 polyps. In this experiment, we extract a subvolume around a polyp and present it to observers, who are asked to give two scores based on its morphology and location (described below) for each polyp.

3.2.1 Score polyps

We study the polyp shape variance due to the morphology and location differences in this experiment. To analyze the morphology influences on polyp shape, we focus on three morphologic polyp types: flat, sessile, and pedunculated (Figure 3.1). Polyps which do not present regular shape, e.g. large mass, will not be included in our polyp shape analysis. These three morphologic types of polyps are scored from 1 to 10 as shown in Table 3-1. To analyze the location influences on polyp shape, we model the polyp location as a gradual transition from the colon surface, which is relatively flat, to the top of a haustral fold, which has a ridge-like shape. Four typical locations of polyps are: colon surface, bottom of a fold, side of a fold, and top of a fold. We score the polyp location from 1 to 10 as shown in Table 3-1. In our polyp shape analysis, we have two scores for each polyp: morphology score and location score.

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Flat</th>
<th>Sessile</th>
<th>Pedunculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>1.0</td>
<td>5.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Location</td>
<td>Colon surface</td>
<td>Fold bottom</td>
<td>Fold side</td>
</tr>
<tr>
<td>Score</td>
<td>1.0</td>
<td>4.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

For the initial trial of the experiment, three CTC researchers were recruited to score polyps. We will recruit radiologists and residents in the future after validating the proposed method. To generate a polyp surface from the original CTC images, a region of interest, which is a 50mm x 50mm x 50mm volume of image data around a polyp, is extracted from a CTC study. The polyp surface in this image is generated using the marching cube algorithm [93]. The threshold for the marching cube algorithm is adjusted
between -500 and -800 according to each CTC study by a user. The polyp surface is then presented to an observer using visualization software [94]. Each observer is requested to provide two scores to the polyp regarding morphology and location as defined in Table 3-1. Reference polyps used for this study are presented in Figure 3.1 and 3.2, and their respective scores are shown in Table 3-1. This information is provided so that all the observers have a common baseline. Due to the use of image contrast agent in CT scans and the limitation of the polyp surface visualization method, several polyps that are merged in the contrast agent are hard to represent as a surface. Therefore, these polyps are not scored in our experiment. Also, observers are asked not to score a polyp if they cannot determine its morphology and/or location. Polyps that are not scored are regarded as missing-value polyps. Because missing-value polyps are either submerged in contrast agent or not very well defined in terms of morphology or location (at least one observer found it difficult to determine its morphology score or location score), we exclude them from our polyp clustering. We have 32 polyps in WFU dataset and 54 polyps in WRAMC dataset for which both morphology and location scores are provided by the three observers.

3.2.2 Cluster polyps into groups

To cluster polyp into groups according to their polyp scores, we make use of the K-means algorithm. Since three observers were involved in this initial trial, each polyp has three scores for both the morphology and location. One way to analyze these scores is to calculate the mean morphology and location scores for each polyp and input the mean scores to the K-means algorithm. Alternatively, these multiple scores from three observers can be fed into the K-means algorithm. The disadvantage of the later method is that each polyp will have three representations from the input data. The scores for these three representations may be different because they come from different
observers. Therefore, these three representations may not be grouped within the same cluster in K-means algorithm even though they represent the same polyp. If this happens, additional efforts are required to determine which group a polyp belongs to after K-means clustering. We opt for the first approach which uses the mean scores as the input because of its simplicity.

Usually a clustering algorithm requires users to specify the number of clusters, e.g., the number k in K-means algorithm. However, our initial goal is to seek the number of clusters in the polyp scores. To automatically detect the number of clusters, we tried the EM (expectation maximization) algorithm in WEKA [95]. This EM algorithm determines the number of clusters by evaluating the log-likelihood which is the probability of each sample belonging to each of the clusters. The evaluation in determining the number of clusters is done in the following steps:

1. The number of clusters is set to 1
2. The training set is split randomly into 10 folds.
3. EM is performed 10 times using the 10 folds cross validation method.
4. The log-likelihood is averaged over all 10 results.
5. If the log-likelihood increases, the number of clusters is increased by 1 and the program continues at step 2.

After running the EM algorithm on the mean morphology and location scores, the number of clusters selected by cross validation is always one with the cluster center located at: morphology score = 4.5 and location score = 5.0. This means that when the number of clusters is increased from one to two, the average log-likelihood of polyp scores is also increased. One of the reasons why the EM failed in our case is because the log-likelihood is not an appropriate metric to determine the quality of clusters of polyp scores. Other metrics such as MDL (minimal description length) will be investigated in the future in order to make EM algorithm work on our polyp scores data.
Therefore, we use the K-means algorithm with the number of clusters, k, specified by users. We cluster polyps according to morphology scores and location scores in two separate steps: polyps are clustered based on morphology scores in the first step; polyps are clustered based on location scores in the second step. The K-means algorithm in Matlab is employed to cluster polyps. We do not cluster polyps based on morphology scores and location scores together because it is hard to decide the number of clusters for the K-means algorithm. In clustering based on morphology scores, the number of clusters is set to three to represent flat, sessile, and pedunculated polyps, and the start position for k-means algorithm is set to (1.0, 5.0, 10.0). In clustering based on location scores, the number of clusters is set to four to represent colon surface, bottom of a fold, side of a fold, and top of a fold, and the start position is set to (1.0, 4.0, 7.0, 10.0). The selection of three clusters for morphology scores and four clusters for location scores is based on our knowledge after visual examination of tens of polyps in our polyp database. And the start positions are set to the same as the scores in the reference polyps in Table 3-1. After all polyps are clustered, we put polyps into one group if they belong to the same morphology cluster and the same location cluster. For example, polyps with morphology cluster of “flat” and location cluster of “colon surface” are put into group one, polyp with morphology cluster of “flat” and location cluster of “bottom of a fold” are put into group two, etc.

3.2.3 Align polyps in each group

For each polyp group generated in the clustering analysis, we align all polyps in that group in order to minimize the translation, rotation, and scale differences among the polyps. After alignment the position and orientation of polyps in a group are similar. Then we calculate the mean image of the aligned polyps, and measure the distance between a polyp surface in an aligned polyp to the polyp surface in the mean image. The mean
value of the distance in a polyp group is the metric to measure the shape variance in that group. The overall process of the alignment is shown in Figure 3.3.

Figure 3.3 Extraction of a polyp region using a bounding box and alignment of extracted polyp regions.

The inputs to the alignment algorithm are extracted images of the polyps in 3D. The polyp region shown in Figure 3.1 and 3.2 cannot be used as inputs to the alignment algorithm because there are too many surrounding tissues other than the polyp itself. These surrounding tissues are useful in assisting observers in deciding polyp location when scoring a polyp. But too many surrounding tissues causes the alignment algorithm to focus on the surrounding tissues rather than the polyps. To address this problem, we define a polyp region by manually adjusting a bounding box around the polyp (Figure 3.3). The pixels inside that bounding box are considered a polyp region and therefore are extracted. After extraction, polyps have the same orientation, e.g., the polyp tip points to up.
In the next step, we align polyp regions based on modified generalized Procrustes analysis (GPA) algorithm. The GPA algorithm was designed to align objects which are represented by landmarks. A landmark is a point in 2D or 3D spatial space. The point coordinates of all landmarks are inputs to the GPA algorithm which translates, rotates, and scales objects in order to maximize the overlap among all objects. In medical imaging, landmarks are usually generated manually, which requires a user to observe all images and designate points as landmarks on each image. The landmark correspondence among all images is also set by a user. This manual process is time consuming. And the inaccuracy of landmarks introduced by a user cannot be eliminated in the GPA algorithm.

There are several alignment methods that are based on image registration techniques and do not require landmarks. In [88], the authors proposed an energy functional to simultaneously minimize the difference between any pair of binary images. In [96], the authors proposed a non-rigid groupwise registration method to register brain images. A registration method usually requires three core components:

1. a representation of the transformation
2. an objective function, and
3. an optimizer.

The optimizer seeks the optimal values for the transformation parameters in order to minimize the objective function. In pairwise registration, there are few parameters because there is only one image that needs to be transformed. In group-wise registration, however, the number of parameters can be large if there are many images in a group. For example, in 2D case, there are four transformation parameters in pairwise registration: translation x, translation y, rotation angle θ, and scale ration s. In group-wise registration that contains 10 images, it requires $36 = 4 \times 9$ parameters in order to register nine images to a reference image in that group. With this large number of
parameters, which can be regarded as a high dimensional space, it is difficult for an optimizer to find the optimal values for each parameter.

We devise an alignment method with repeated registration procedures. In each repetition of the registration procedure, we calculate a mean image based on current transformed images and register each transformed image to that mean image. This is similar to the GPA algorithm in which a mean configuration (a $k \times m$ matrix of Cartesian coordinates of k landmarks in m dimensions) is calculated and each configuration is superimposed to the mean configuration in order to align landmarks [97].

Different from the GPA algorithm, where all configurations have the same matrix size, images being aligned are not of the same size. The images are cropped from subvolume of polyp images as shown in Figure 3.3. Because polyps have different size, the sizes of cropped images are not same. The mean image, whose pixel intensity is the mean value of intensities of pixels in all images, is difficult to calculate if there are pixels that are inside of one image but outside of others. The difficulty is aggravated when there is a rotation transformation involved during the registration process. To address this problem, we center all images to the origin of a coordinate system and set the size of mean image to the size of the overlapped region of those centered images. Since those cropped image are roughly pose to the same orientation, the initial mean image will cover the center part of a polyp. This assures that the following repeated registrations will succeed.

The registration of each image to the mean image follows a standard process. The transformation is a similarity 3D transform, which contains seven parameters: three translations, three rotations (using quaternion), and one scale. The objective function is the mean square difference between two images. For the optimizer, we utilize the versor transform optimizer in the ITK library [66]. The advantages of our alignment method are:

1. it does not require landmarks
2. there are few number of transformation parameters for the optimizer because we register each image to the mean image in an individual registration process.

Modified GPA algorithm:

1. Given N input images, calculate the mean image. The size of the mean image is set to the size of overlapped region among N input images, and pixel intensities are the mean value of N pixel intensities from N input images.
2. Register each input image to the mean image individually. After registration, transform each input image to obtain a transformed image.
3. Repeat the steps 1 and 2 with transformed images as input images until the number of repetition is larger than a number specified by users.

3.2.4 Reassign polyps to a different group

Polyp groups obtained from the k-mean algorithm are based on morphology scores and location scores. However, in a polyp group, several polyps may not be aligned very well to the others because morphology and locations scores do not precisely describe polyp shape. We use the Hausdorff distance to define the goodness of how a polyp fits in its group, and move “bad” polyps to another group based on the Hausdorff distance.

$$d_H(X,Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\}$$ \hspace{1cm} \text{Equation 3.1}$$

The Hausdorff distance, defined in equation 3.1, is calculated between each aligned polyp and the mean polyp. After aligning polyps, we obtain one mean polyp image and several aligned polyp images. In this step, we generate polyp surfaces for the mean image and aligned polyp images. The Hausdorff distance from each aligned polyp
surface to the mean polyp surface is calculated. If the Hausdorff distance for an aligned polyp is large, which indicates that the polyp is not similar to the mean polyp, that polyp is removed from its current polyp group. Then we align the remaining polyps in the polyp group and calculate the Hausdorff distances again. We repeat this process until there are two polyps left in the group. The removed polyp will be assigned to a new group if its Hausdorff distance to the mean polyp of that group is small. Through this method, polyps are reassigned to different polyp groups in order to maximize the shape similarity in each group.

3.3 Results

3.3.1 Cluster polyps into groups

Figure 3.4 shows the 3D histograms for scores from each observer and for the mean scores. The 3D histogram is generated with morphology score on the x-axis and location score on the y-axis. The X-Y plane is divided into 10x10 bins, and the number of polyps whose scores fall into each bin is plotted on the z-axis. From the plots we can see several common features among the polyp scores from three observers: there are a large number of polyps around the position where location score ranges from 1 to 2 and morphology score ranges from 1 to 6; there are very few polyp scores at position where location score ranges from 1 to 2 and morphology score ranges from 6 to 10; there are many polyps where location score is 1 or 10. This information indicates that, in our polyp database, there is a large number of polyps located on colon surface or top of a fold, and most of these polyps are flat or sessile morphologic type.
Figure 3.4 Histogram of polyps’ morphology score and location score. Plots (a) (b) (c) are generated based on polyp scores from each observer. Plot (d) is generated based on mean polyp scores.

After applying the k-means algorithm, we have three clusters for morphology scores and four clusters for location scores. The center and the number of polyps for each cluster are list in Table 3-2 and 3-3.

Table 3-2 Morphology score clusters

<table>
<thead>
<tr>
<th></th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology score at</td>
<td>2.9</td>
<td>5.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Number of polyps</td>
<td>36</td>
<td>48</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3-3 Location score clusters

<table>
<thead>
<tr>
<th></th>
<th>Cluster 1</th>
<th>Cluster 2</th>
<th>Cluster 3</th>
<th>Cluster 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location score at center</td>
<td>1.3</td>
<td>4.4</td>
<td>7.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Number of polyps</td>
<td>32</td>
<td>18</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
The scores at clusters’ center and number of polyps in each cluster match what we have learned from the histogram (Figure 3.3.d): many polyps are located on the colon surface and the top of a fold; there are very few pedunculated polyps.

Based on the clustering results, we put polyps into one group if they belong to the same morphology cluster and location cluster. There are 12 polyp groups, three morphology clusters time four location clusters, and the number of polyps in each group is shown in Table 3-4. Note that there are no polyps in two groups: the group of pedunculated polyps on colon surface and the group of pedunculated polyps on side of a fold. This is because there are very few pedunculated polyps in our experimental data. We may need more example polyps for complete generalization.

<table>
<thead>
<tr>
<th></th>
<th>Colon surface</th>
<th>Bottom of a fold</th>
<th>Side of a fold</th>
<th>Top of a fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat</td>
<td>18</td>
<td>5</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Sessile</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Pedunculated</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

3.3.2 Align polyps in each group

We show the alignment result from one polyp group here, which is the group that contains sessile polyps located on the colon surface. There are a total of 14 polyps clustered into this group. Eight of these polyps are from WFU data and six are from WRAMC data. We use WFU dataset as training data and use WRAMC dataset as test data in the polyp segmentation and polyp detection which will be described in chapters four and five. Therefore, we only align those eight polyps from WFU dataset and construct a shape model from them. In the alignment algorithm, the number of repetition is set to four as the stopping criteria. This is based on our visual comparison of aligned polyps that was generated with different repetitions from 1 to 20. The scale factor is set to 100 in order to prevent the moving image from being scaled up.
The surfaces for polyp images before and after alignment are shown in Figures 3.5 and 3.6. Note that these polyps are centered in a 3D coordinate system and viewed from the same position. We can see, in Figure 3.5, the sizes of the polyps are different. After alignment, the polyp sizes are similar as shown in Figure 3.6. The scale effect in a similarity transform is apparent after alignment. The translation effect is also observable. Notice that the first polyp in Figure 3.5 is on the left side of the colon surface; all other polyps in Figure 3.5 are positioned in the center. After alignment, all polyps are shifted left in order to align with the first polyp. The rotation effect can be seen in the third polyp.

The last polyp failed to be aligned with other polyps (Figure 3.6) because this polyp is scaled up during the alignment process. This suggests that this polyp should not belong to this group. The seventh polyp in Figure 3.6 looks different from others due to the contour process. This polyp is grown on a thin colon surface (~3mm in thickness) whose CT intensity value is in the range of [-700, -550] (usually, colon tissue’s CT intensity value ranges from -700 to 100). So the colon surface is not included in the surface generated by the marching cube algorithm with a threshold of -500.

Figure 3.5 Polyp surfaces before alignment.
Figure 3.6 Polyp surfaces after alignment.

Figure 3.7 Overlaid polyps before and after alignment, and the polyp of the mean image after alignment (from left to right).

The overlapped polyp surfaces before and after alignment are shown in Figure 3.7. After alignment, the mean image, the last one in Figure 3.7, is calculated from aligned polyp images.

3.3.3 Reassign polyps to a different group

The Hausdorff distances for eight aligned polyps in Figure 3.6 are listed in Table 3-5. The mean value of these Hausdorff distances is 3.4mm. We measure the polyp size of the mean polyp in Figure 3.7, which is 10mm. Therefore, the mean Hausdorff distance for those eight aligned polyps is 34% of the polyp size.

Table 3-5 Hausdorff distances for aligned polyps in Figure 3.6.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4mm</td>
<td>3.0mm</td>
<td>1.6mm</td>
<td>2.1mm</td>
</tr>
<tr>
<td>1.8mm</td>
<td>1.4 mm</td>
<td>6.8mm</td>
<td>7.0 mm</td>
</tr>
</tbody>
</table>
Among those eight aligned polyps, two of them with two largest Hausdorff distances will be removed from this polyp group. Table 3-6 lists the Hausdorff distances in a polyp group and the mean values after removing a polyp in each iteration. We select polyps remaining in the third iteration as a group of polyps to construct a shape prior model. This is because there is significant decrease of the largest Hausdorff distance between the second and third iteration: from 7.4 to 3.0. The largest Hausdorff distance after the third iteration is 3.0mm, which is relatively small to the size of the mean polyp, 10mm. The removed two polyps will be assigned to another polyp group after we align all polyp groups in the future.

Table 3-6 Hausdorff distances in a polyp group. The polyp with the largest distance in each row is highlighted.

<table>
<thead>
<tr>
<th>Polyp</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1</td>
<td>3.4</td>
<td>3.0</td>
<td>1.6</td>
<td>2.1</td>
<td>1.8</td>
<td>1.4</td>
<td>6.8</td>
<td>7.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Iteration 2</td>
<td>3.5</td>
<td>2.3</td>
<td>2.0</td>
<td>2.3</td>
<td>1.7</td>
<td>1.3</td>
<td>7.4</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>Iteration 3</td>
<td>3.0</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>1.5</td>
<td>1.2</td>
<td></td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Iteration 4</td>
<td>2.7</td>
<td>2.4</td>
<td>2.5</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
<td></td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Iteration 5</td>
<td>2.4</td>
<td>1.6</td>
<td>2.1</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>Iteration 6</td>
<td>2.4</td>
<td>1.0</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Iteration 7</td>
<td></td>
<td>2.5</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>

3.4 Conclusion

In conclusion, we propose a method to study the polyp shape in order to cluster similar polyps into groups. This method starts with scoring polyps based on its morphology and location features. Then polyps are clustered into several groups using the k-means algorithm. In the next step, a modified GPA algorithm is used to align polyps in each polyp group. Finally, polyps are reassigned to different groups based on their Hausdorff distances. From the alignment results for a polyp group, we conclude that this method successfully clusters similar polyps into one group and differentiates them from those which are not. In future, we will devise a method to merge polyps in
different groups into one group, and seek the optimal number of groups that minimizes
the intra-group shape variance while maximizing the inter-group shape variance.
Chapter Four

Polyp Segmentation using Shape Prior Models

Polyp segmentation can improve the efficacy of CTC CAD by providing additional diagnostic information to radiologists such as polyp size. Because of the obscure boundary between a polyp and its surrounding colon tissues in CTC images, the task of polyp segmentation is difficult. In this chapter, we construct a shape prior model based on polyps in one polyp group and propose a polyp segmentation method using this model. We test the proposed method by segmenting 19 polyps. The segmentation results are quantitatively evaluated by comparison with manually segmented polyp surfaces.

4.1 Introduction

A complete description of a colorectal polyp includes both its location and its 3D extent. Earlier approaches to CTC CAD mostly focus on polyp detection using geometric features, and the polyp extent is left to the physician to determine visually. More recently, automated and semi-automated methods for polyp segmentation have been proposed as a way to increase the efficacy of CTC CAD as well as to provide additional diagnostic information to radiologists[48-50]. Specifically, the inclusion of all voxels within the 3D extent of polyps would allow new features to be obtained, for example intensity distribution, volume, and texture. These new features could then be used to improve polyp detection performance. Furthermore, accurate determination of polyp size is important for determining treatment options. Current measurements made by radiologists using the largest apparent dimension are subject to inter-operator variability. Computer based generation of polyp size provides a more accurate estimate and
removes this variability. Finally, a complete description of a polyp that includes both its location and all voxels that are associated with it is essential for creating a ground truth polyp database for training, testing, and validating CTC CAD systems.

Polyp segmentation is a challenging task. Although the boundary between a polyp and a colon lumen is apparent because of pixel intensity differences in CT images, the boundary between a polyp and its surrounding colon tissues is hard to define. As shown in Figure 4.1, the boundary between a polyp and its surrounding colon tissues is obscure because there is no image contrast in that area. This is because a polyp is an abnormal growth of tissue projecting from a colon wall, both of which are soft tissues and have similar intensities in CT images. Lacking image contrast makes polyp segmentation a difficult task in identifying the boundary between a polyp and colon tissues.

![Figure 4.1](image)

Figure 4.1 The boundary between a polyp and its surrounding colon tissues is obscure, even though the boundary between a polyp and colon lumen is apparent.

A number of polyp segmentation methods have been reported in the literature. For example, Jerebko et al. [98] used a Canny operator and the Radon transform to detect polyp boundaries. Yao et al. [48, 49] employed a deformable model and an adaptive deformable model to segment polyps. Tan et al. [99] evolved geodesic active contours with a modified speed function on the colon surface to detect polyp neck regions. Nappi et al. [100] utilized a level set method to extract the polyp mass region. Lu et al. [50] proposed a classification scheme to segment polyps. Recently, Grigorescu et al. [101] took a histogram approach to determine the threshold that would separate polyps from surrounding colon tissues. All these methods exploited only the local
information in images such as pixel intensity and gradient. Since the intensity and gradient are insufficient in identifying a boundary between a polyp and colon tissues, the boundary is not accurately extracted in above methods.

We propose a model based approach that incorporates prior knowledge of polyp shapes into the segmentation process. The idea behind this approach is that we utilize a shape prior model to determine the boundary between a polyp and its surrounding colon tissues. At the same time, the boundary between a polyp and a colon lumen is determined by pixel intensity and gradient features in a CT image. The proposed method provides the segmentation result as a polyp surface which covers the protrusion part of a polyp. The polyp surface together with the pose of a polyp, which is derived from the shape prior model, can be utilized to measure polyp size and height automatically.

Incorporating shape information into geodesic active contours has been proposed by Leventon et al. [87]. However, this method depends on an edge-function and is susceptible to the weak edge leakage problem [102]. In the proposed method, we integrate a model based registration method and a region based level set method, which does not require an edge-function, to identify polyp boundaries. We organize this chapter as follows: in the method section, the method of constructing shape prior models is described in section 4.2.1; in section 4.2.2, we compare three polyp segmentation methods that utilize shape prior models and describe the detailed steps for one of these methods. In the results section, the segmentation results are evaluated by comparing them to manually segmented polyp surfaces. And we conclude this chapter with discussions on an alternative way to construct shape prior models.
4.2 Method

4.2.1 Construction of shape prior models

Polyps are aligned using the method described in chapter three (section 3.2.3). PCA is utilized to generate the shape variances among aligned polyps. A shape prior model is described by a mean image and a number of eigenvectors and eigenvalues outputted from PCA.

We use level set images of aligned polyps as the input to PCA. A level set image is a signed distance map with negative values inside an object, positive values outside an object, and zero on an object boundary as shown in Figure 4.2. The pixel value in a level set image equals to the distance from that pixel to the zero level curve in 2D or the zero level surface in 3D. A level set image is computed based on a binary image which is usually generated by manual segmentation. We generate binary images for aligned polyps based on a user specified pixel intensity threshold around -500 Hounsfield units, which can be adjusted by a user from case to case [103]. In an aligned polyp image, pixels with intensity less than the threshold will be labeled as “0” and pixels with intensity larger than or equal to the threshold will be labeled as “1”. These pixel labels, 0s and 1s, are stored in a binary image. And this binary image can be manually modified pixel by pixel as needed.

![Figure 4.2 An example of a level set image. The curve represents the zero level curve in this level set image.](image)

Given a binary image, its level set image is computed using Euclidean distance mapping [104]. Usually, a level set image is used to represent an object with a closed
boundary. However, a polyp is not closed since its boundary to colon tissues is not clearly defined in an image. We devise a method to calculate a signed distance map for a non-closed object in two steps. In the first step, we set those “0” pixels as background and calculate a distance map for “1” pixels. In the second step, we set those “1” pixels as background and calculate a distance map for “0” pixels. Then we calculate the final distance map as:

\[
distance \text{ map} = -1 \times \text{first distance map} + \text{second distance map}
\]

The final distance map is a level set image with soft tissue pixels having negative values and air pixels having positive values.

A shape prior model is constructed based on these level set images. A shape prior model consisted of a mean image and a number of mode images. Given a group of \(N \) level set images \(\{u_1, u_2, \ldots, u_N\} \), the mean image \(\bar{u} \) is calculated as:

\[
\bar{u} = \frac{1}{N} \sum_{i=1}^{N} u_i
\]

The mode images are \(k \) principal components corresponding to the \(k \) largest eigenvalues in PCA. The mode images represent shape variances among \(N \) level set images. To compute mode images, an offset image from each level set image to the mean image is calculated as:

\[
\Delta u_i = u_i - \bar{u}
\]

Each offset image is vectorized and put into a matrix \(S \) as one column:

\[
S = [\Delta u_1, \Delta u_2, \ldots, \Delta u_N]
\]

Then PCA is applied to the matrix \(S \). The \(k \) principal components of matrix \(S \), \(\{v_1, v_2, \ldots, v_k\} \), corresponding to the largest \(k \) eigenvalues are de-vectorized to form \(k \) mode images. The number \(k \) is selected based on the eigenvalues of the matrix \(S \). The ratio between the summation of the largest \(k \) eigenvalues and the summation of all
eigenvalues is the metric to decide the number k. This ratio indicates how many shape variances are included in the k principal components.

Given a mean shape image and k mode images, a new shape can be created according to the following equation:

\[u_{\text{new}} = \bar{u} + \sum_{i=1}^{k} \alpha_i v_i \]

Equation 4.1

In this equation, \bar{u} is the mean image, α_i is a coefficient, and v_i is an eigenvector. Through changing the value of α_i, a new shape is generated based on the mean image and mode images. Usually, α_i ranges from $-3\sqrt{\lambda_i}$ to $3\sqrt{\lambda_i}$, where λ_i is an eigenvalue of the matrix S. Figure 4.3 shows an example of a shape prior model with three modes. Six new shapes listed in the first and last columns are generated through changing the coefficient values α_i.

<table>
<thead>
<tr>
<th>$\bar{u} - 3\sqrt{\lambda_i} v_i$</th>
<th>mean image:</th>
<th>$\bar{u} + 3\sqrt{\lambda_i} v_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode 3:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.3 An example of a shape prior model with three modes. Each row represents a variance mode in a shape prior model. The mean image of the model is shown in the
second column. Two new shape images are generated for each mode by changing coefficient α_i in Equation 4-1 to $-3\sqrt{\lambda_i}$ (the first column) and to $3\sqrt{\lambda_i}$ (the third column).

4.2.2 Polyp segmentation using shape prior models

Three segmentation methods are described and analyzed in this section: a boundary based level set method, a region based level set method, and a model based registration method. The first two methods do not successfully segment polyps in several practical cases. The reason will be discussed shortly. The third method is the most successful one among these three methods and is our proposed polyp segmentation method using shape prior models. In this section, we briefly describe the boundary based level set method and the region based level method. We focus our efforts on analyzing these two methods to discover the root causes on why they failed to segment polyps. Please refer to [83, 84, 87] for the detailed description.

4.2.2.1 A boundary based level set method with shape prior influence

Several boundary-based level set methods have been proposed as image segmentation techniques [74-79], all of which require an edge to be present along the boundary of an object in order to segment the object. In these methods, a feature image is generated from the edge information with small pixel values around an edge and large pixel values in non-edge areas (an example of a feature image can be found in Figure 4.7.b). Pixel values in a feature image is used to control the evolution speed of level sets, i.e., a level set is moving slowly around an edge and fast in non-edge areas. With this mechanism, a level set, the zero level set, will converge on the boundary of an object to be segmented. Most level set methods utilize the curvature information to control the smoothness of level sets. Geodesic active contours (GAC) [83] is a popular boundary
based level set method. It evolves level sets, either inside or outside, to a boundary in an image through an additional term in its mathematic formulation. GAC is extended in [105] by incorporating shape information into the level set evolution process. We call this method ShapeGAC.

To incorporate shape information into the process of segmenting an object in an image, ShapeGAC computes a prior on shape variation given a set of training instances of an object. The prior on shape variation is folded into the level set evolution process of GAC. In the traditional GAC, i.e. without the shape prior influence, level sets are evolved according to a differential equation in Equation 4-2:

\[
\frac{\partial u}{\partial t} = g(c + \kappa)|\nabla u| + \nabla u \cdot \nabla g \\
\text{Equation 4-2}
\]

where \(u \) is a level set function with the zero level set, \(u = 0 \), implicitly represents a curve in 2D or a surface in 3D; \(g \) is a function of the image gradient (usually of the form \(\frac{1}{1+|\nabla I|^2} \)); \(c \) is a constant term that forces a zero level set to flow outward or inward; \(\kappa \) is the curvature; \(\nabla u \cdot \nabla g \) is a term that further attracts level sets to a boundary. In this level set formulation, \(u \) evolves over time at every point perpendicular to the level sets as a function of the curvature and the image gradient at that point. In order to incorporate shape information into the GAC, ShapeGAC adds a global shape force to the evolution of level sets. At each step of the level sets evolution, ShapeGAC estimates the maximum a posteriori (MAP) position and shape of the object in an image, based on the shape prior model and the image information. The MAP estimate of the final shape is combined with the GAC update, \(\Delta u \), computed from Equation 4-2, to evolve the level set function \(u \) over time. Figure 4.4 (from the original paper of ShapeGAC [87]) illustrates how to combine MAP estimate of the final shape and the GAC update. Figure 4.5 shows four steps in segmenting a corpus callosum in a MR image in [87].
Figure 4.4 Illustration of the two forces in the evolution of a level set function u in ShapeGAC. The u^* is the MAP estimate of the final shape. The v is GAC update computed from Equation 4-2. λ_1 and λ_2 are weight parameters to balance the influence of the shape prior model and the GAC model.

Figure 4.5 Four steps in segmenting a corpus callosum using ShapeGAC. The red curve is the zero level set of u. The green curve is the next step in the curve evolution. The yellow curve is the MAP estimate of the final curve. The cyan curve in the last image is the GAC segmentation without the shape influence.

Figure 4.6 Five steps in segmenting a simulated polyp using the modified ShapeGAC. The red curve is the zero level set of u. The green curve is the MAP estimate of a shape prior model.

There are two difficulties in applying ShapeGAC to segment polyps. First, the ShapeGAC is designed to segment an object with a closed boundary. A polyp, however, does not have a closed boundary because there is no edge between a polyp and
surrounding colon tissues in a CT image. Second, the weight parameters λ_1, λ_2 in ShapeGAC are constant. Appropriate values for these two weights are difficult to specify when segmenting a polyp because a large part of a polyp boundary is obscure. We modified the ShapeGAC to address those two problems in [106]. First, we manually add a baseline to a polyp in training images in order to make a closed boundary for a polyp. Second, we adaptively change the weights of λ_1 and λ_2 according to the edge information during the evolution of level sets. In the modified version of ShapeGAC, we would like to make the GAC model act as a major contributor where there is an edge, e.g., the boundary between a polyp and colon lumen. But in the no-edge areas, such as the boundary between a polyp and surrounding colon tissues, we would like the shape prior model to be the major contributor in evolving level sets. (please refer to [106] for the details) Figure 4.6 shows five steps in segmenting a simulated polyp using the modified ShapeGAC.

Both ShapeGAC and the modified ShapeGAC fail to segment polyps in several practical cases. The main cause of the failure is the weak-edge-leakage problem which is a common disadvantage of boundary based level set methods [102]. Figure 4.7 shows an example where a weak edge exists between a polyp and a haustral fold. The evolving level sets are leaked to the nearby haustral fold because the weak edge in the feature image (Figure 4.7.b) cannot stop the level sets from expanding. The segmentation result (Figure 4.7.c) contains colon lumen at the weak edge region. To address this weak-edge-leakage problem, a region based level set method is employed to segment polyps with a shape prior model in the next section.
Figure 4.7 An example of weak edge leakage using the modified ShapeGAC method. (a) a CT slice of a polyp. (b) the feature image of (a). In this feature image, pixels around an edge have small intensities (black) and pixels in non-edge regions have large intensities (white). (c) the segmentation result (a red curve). (d) 3D representation of the polyp in (a).

4.2.2.2 A region based level set method with shape prior influence

A region based level set method was proposed in [84] to segment an object whose boundaries are not necessarily defined by image gradient, i.e., edge. This method, called Chan-Vese model, employs a novel stopping term in the level sets evolution based on the Mumford-Shah segmentation technique. This stopping term does not depend on the gradient of an image, as the boundary based level set methods do, but is instead related to a particular segmentation of the image. Therefore, the Chan-Vese model does not suffer from the weak-edge-leakage problem. Figure 4.8 in [84] demonstrates the advantage of the Chan-Vese model over the GAC model in segmenting an object with weak edges. In this example, the pixel intensity in the image is gradually changed from black to white.
Figure 4.8 An object with weak edges. Top: results using the Chan-Vese model without edge-function. Bottom: results using the GAC model with edge-function.

The Chan-Vese model divides an image into two regions, background and foreground, with pixels inside the zero level set considered as foreground and pixels outside the zero level set considered as background. Assume a simple case that an image’s background and foreground have piecewise-constant intensities. The basic idea of the Chan-Vese model is that the difference between intensity of a foreground pixel (a background pixel) and the mean intensity of the foreground (background) pixels is zero if the zero level set correctly describes an object boundary in an image. The mathematic formulation and numerical algorithm of the Chan-Vese model can be found in [84].

We try to incorporate shape prior information in the Chan-Vese model using the same method as in ShapeGAC (Figure 4.4). However, the edge-independent stopping term in the Chan-Vese model, which is strength of the method, becomes a limitation in introducing a shape prior influence. In the Chan-Vese model, level sets are evolved according to Equation 4-3 (we use the same notation here as the equation (9) in [84]):

$$\frac{\partial \phi}{\partial t} = \delta_{\epsilon}(\phi) \left[\mu \text{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) - v - \lambda_1 (u_0 - c_1)^2 + \lambda_2 (u_0 - c_2)^2 \right]$$

Equation 4-3

In this equation, ϕ is a level set function; u_0 is a pixel’s intensity. c_1 is the mean intensity of foreground pixels and c_2 is the mean intensity of background pixels; λ_1 and λ_2 are constant weights. In the implementation, we find that the values for terms $\lambda_1 (u_0 - c_1)^2$
and $\lambda_2(u_0 - c_2)^2$ are very large in comparison to the level set function values on active contours. Usually, the level set function value of active contours are close to zero, e.g., from -1 to 1. However, in CT images of a polyp, the values of those two terms, $\lambda_1(u_0 - c_1)^2$ and $\lambda_2(u_0 - c_2)^2$, can reach as large as 40,000. It is difficult to update the level set function using these large values. To address this problem, in the implementation of the Chan-Vese model, the level set function is re-initialized after every iteration according to the zero level set, which is updated according to the sign of those large values. The update of the level set function, the term ν in Figure 4.4, is always a constant value. Therefore, we cannot introduce a shape prior influence by adding a weighted term as in Figure 4.4.

The authors in [88] proposed a method that successfully incorporates shape influence into the Chan-Vese model. The method integrates a shape prior model into the energy functional of the Chan-Vese model introduce the model as an additional force in evolving level sets. This method works when the shape variance in a model is relatively small, such as prostate glands which are test samples in [88]. However, the shape variance among polyps is much larger as we have demonstrated in chapter three (Figure 3.6). There is a significant difference between Tsai’s method and our proposed segmentation method. Tsai’s method uses the boundary of the shape prior model as the final segmentation result, which is inaccurate when the model is not deformed to be the same as an object to be segmented. Our method can generate accurate segmentation results even when the shape prior model cannot be deformed to be the same as an object, which is common in practice. The details of the proposed method are described in the following section.
4.2.2.3 The Chan-Vese model with shape model based registration (ShapeRegistrationCV)

Both methods mentioned above includes two forces that evolve level sets. The first force comes from the image, i.e., a force derived from Equation 4-2 for GAC and a force derived from Equation 4-3 for the Chan-Vese model. The second force is the influence of a shape prior model. These two forces are weighted by two parameters, λ_1 and λ_2. Striking a balance between these two forces is a difficult task. This is especially true for polyp segmentation because a majority of polyp boundaries are obscure. A large image force may cause a segmentation result containing many surrounding colon tissues; and a large shape prior model force may cause a segmentation result so similar to the model that it is not located on a polyp boundary in an image.

In this proposed method, we separate these two forces into two individual steps. In the first step, we employ the Chan-Vese model to segment a polyp, which utilize the image force only. As we mentioned before, since the boundary between a polyp and colon lumen is well defined by image contrast, the Chan-Vese model can identify the boundary very well. However, because there is no shape prior model influence in this step, a segmentation result will contain a large amount of surrounding colon tissues (see Figure 4.11 for examples). In the second step, we register a shape prior model to the Chan-Vese segmentation result in order to estimate the location and pose of a polyp. During the registration, a shape prior model is deformed and transformed to match the segmentation result. The deformation is restrained such that a deformed model is a valid polyp shape. The advantage of this separation of two forces into individual steps is that it needs not strike balances between different forces. Since this method combines the Chan-Vese model and a model based registration method, we call it ShapeRegistrationCV.
In the first step of ShapeRegistrationCV, the traditional Chan-Vese model without shape influence is used to segment a polyp. Initial level sets are constructed using a user specified point inside a polyp. Since a polyp is pretty small region in a CTC abdominal study, we only need segment a small subvolume around a polyp. In the Chan-Vese model, we set the iteration to 20 in our experiment, which generates a sufficient region around a polyp for the following step. The output from Chan-Vese model is a binary image. The method in section 4.2.1 is used to generate a level set image for the binary image. This level set image, we call it Chan-Vese segmentation image, is used in the next step.

In the second step of ShapeRegistrationCV, we apply a model based registration to estimate a polyp’s location and pose. As described in chapter three (section 3.2.3), a registration method usually requires three core components: representation of the transformation, an objective function, and an optimizer. In ShapeRegistrationCV, we add an additional component, a deformation restrained by a shape prior model, in the registration framework:

1. a representation of a transformation,
2. a deformation restrained by a shape prior model,
3. an objective function, and
4. an optimizer.

Each component involved in the second step is described below.

1) Transformation: pose parameters

In a registration framework, the moving image and the fixed image are represented in its own coordinate system. In our case, the Chan-Vese segmentation image is represented in a global coordinate system which is identical to the DICOM coordinate system [107], and the model image is represented in a local coordinate
system around the center of the Chan-Vese segmentation image. A transformation transforms coordinates in the global coordinate system to coordinates in the local coordinate system.

We employ a 3D similarity transformation in our method [93]. The parameters in a 3D similarity transformation are defined as **pose parameters**. In general, a 3D similarity transformation is composed of translation, rotation, and homogenous scaling. It can be represented using matrices:

\[
T \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}
\]

Equation 4-4

In above equation, the vector \(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \) contains coordinates in a 3D coordinate system; \(\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \) is a rotation matrix, \(\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} \) is a scaling matrix, and \(\begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} \) is a translation vector. The transformation \(T \) transforms coordinates \(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \) to new coordinates \(\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} \).

There are seven pose parameters in a 3D similarity transformation. The rotation matrix is represented by a quaternion [108], which has three parameters to control the rotation axis and angle: \(\{q_1, q_2, q_3\} \). The scaling matrix has one parameter, \(s \), to control the scaling factor. The translation vector has three parameters, \(t_x, t_y, t_z \), to translate an object along \(x, y, z \) axes. Therefore, the seven pose parameters in a 3D similarity transformation are: \(p = \{q_1, q_2, q_3, s, t_x, t_y, t_z\} \).

Using \(x \) to represent coordinates of a pixel in the Chan-Vese segmentation image, the transformed model image, \(u_t(x) \), can be calculated as:

\[
u_t(x) = \bar{u}(T(x))
\]

Equation 4-5

where \(\bar{u}(x) \) is the mean shape image represented in a local coordinate system.
2) **Deformation: shape parameters**

The deformation restrained by a shape prior model is represented by Equation 4-6:

\[u_{\text{new}} = \bar{u} + \sum_{i=1}^{k} \alpha_i v_i \quad \text{Equation 4-6} \]

In this equation, \(\bar{u} \) is the mean image, \(\alpha_i \) is a coefficient, and \(v_i \) is an eigenvector. The coefficients \(\alpha_i \) are *shape parameters* because they control the shape of a generated level set function \(u_{\text{new}} \). The number of shape parameters equals to the number of modes, \(k \), in a shape prior model.

Using \(x \) to represent coordinates of a pixel in the Chan-Vese segmentation image, the transformed and deformed model image, \(u_{td}(x) \), can be calculated as:

\[u_{td}(x) = \bar{u}(T(x)) + \sum_{i=1}^{k} \alpha_i v_i(T(x)) \quad \text{Equation 4-7} \]

When deforming the mean shape image, the shape parameters, \(\alpha_i \) are usually restrained in the range of \((-3\sqrt{\lambda_i}, 3\sqrt{\lambda_i}) \) to assure the deformed image to be a valid polyp shape.

3) **Objective function**

In image registration, the objective function quantitatively measures how well the transformed moving image fit the fixed image by comparing pixel values of two images. Since both the moving image (the model image in our case) and the fixed image (the Chan-Vese segmentation image in our case) are represented by level sets, their pixel value differences are close to zero for successful matches between two images. We select the mean square metric as the object function in our method. The mean square metric computes the mean squared pair-wise difference in pixel intensities between two
images. The mean square metric, MS, between the Chan-Vese segmentation image, $f(x)$, and the transformed and deformed model image is defined as:

$$MS(p, \alpha) = \frac{1}{N} \sum_{i=1}^{N} \left[\bar{u}(T(x_i)) + \sum_{i=1}^{k} \alpha_i v_i(T(x_i)) - f(x_i) \right]^2$$ \hspace{1cm} \text{Equation 4-8}$$

where p is a vector of pose parameters; α is a vector of shape parameters; N is the number of pixels in the Chan-Vese segmentation image; T is a transformation that is parameterized upon p; and x_i is a vector that represents a pixel coordinate in the Chan-Vese segmentation image.

Because the size of the Chan-Vese segmentation image is much larger than the size of model image, we modify Equation 4-8 to improve the time efficiency. In the modified equation, we compute the mean square metric on the overlapped region between those two images using the inverse of the transformation T. We rewrite Equation 4-8 as:

$$MS(p, \alpha) = \frac{1}{M} \sum_{i=1}^{M} \left[\bar{u}(x_i) + \sum_{i=1}^{k} \alpha_i v_i(x_i) - f(T^{-1}(x_i)) \right]^2$$ \hspace{1cm} \text{Equation 4-9}$$

where M is the number of pixels in the model image; x_i is a vector that represents a pixel coordinate in the model image coordinate system; and T^{-1} is the inverse of T in Equation 4-8. The Chan-Vese segmentation image is much larger than the model image, which means $N \gg M$. Using an alternative form of the mean square metric in Equation 4-9, we reduce the computational cost. The algorithm that computes the mean square metric in Equation 4-9 is:

\begin{enumerate}
 \item For each pixel in the model image, do
 \item \{
3. Compute pixel value, \(m \), in a deformed model image using Equation 4-6.

4. Transform the pixel to a point in the fixed image’s coordinate system using the inverse of \(T \) defined in Equation 4-4.

5. Interpolate the Chan-Vese segmentation image to obtain the pixel value \(f \).

6. Add the squared pixel value difference, \((m - f)^2 \), to a summation:

\[
sum = sum + (m - f)^2
\]

7.

8. \(MS(p, \alpha) = sum/M \) where \(M \) is the number of pixels in the model image.

During the deformation of the model image, the shape parameters should be restrained in a valid range of \((-3\sqrt{\lambda_i}, 3\sqrt{\lambda_i})\). Also, the situation that the model image is translated to a position far from its initial position is discouraged. In other words, the translation distance in the transformation should be small. In order to meet these requirements, we revised the mean square metric to include three regularization terms as in Equation 4-10:

\[
MS_r(p, \alpha) = \frac{1}{M} \sum_{i=1}^{M} \left[\bar{u}(x_i) + \sum_{i=1}^{k} \alpha_i v_i(x_i) - f \left(T^{-1}(x_i) \right) \right]^2 \\
+ w_1 \frac{1}{k} \sum_{i=1}^{k} \left(\frac{\alpha_i}{\sqrt{\lambda_i}} \right)^2 \\
+ w_2 \sqrt{(t_x - t_{x0})^2 + (t_y - t_{y0})^2 + (t_z - t_{z0})^2} \\
+ w_3 \frac{|s - s_0|}{s_0}
\]

Equation-4-10

In this equation, \(MS_r \) is the regularized mean square metric; \(\{t_{x0}, t_{y0}, t_{z0}\} \) are initial values for translation; \(s_0 \) is the initial value for scaling; and \(\{t_x, t_y, t_z\} \) and \(s \) are current values for translation and scaling. The regularization term \(\frac{1}{k} \sum_{i=1}^{k} \left(\frac{\alpha_i}{\sqrt{\lambda_i}} \right)^2 \) restrains
shape parameters to be within \((-3\sqrt{\lambda_i}, 3\sqrt{\lambda_i})\); the regularization term
\[\sqrt{(t_x - t_{x0})^2 + (t_y - t_{y0})^2 + (t_z - t_{z0})^2} \] keeps the transformed model image close to its
initial position \(\{t_{x0}, t_{y0}, t_{z0}\}\); and the regularization term \(\frac{|s - s_0|}{s_0}\) prevents model image
from shrinking. The \(\{w_1, w_2, w_3\}\) are weights for those three regularization terms. This
regularized mean square metric, \(MS_R\), is used in the optimization step.

4) Optimizer

An optimizer is designed to seek optimal values for pose and shape parameters
that minimize the regularized mean square metric in Equation 4-10. There are seven
pose parameters and \(k\) shape parameters. Finding the pose and shape parameters that
minimize the objective function \(MS_R\) is a nonlinear optimization problem. In principle, any
nonlinear optimization method could be applied. We employ a nonlinear optimization
algorithm, one plus one evolutionary optimizer \([109]\), in our method. This optimizer can
locally adjusts search direction and step size, and provides a mechanism to step out of
non-optimal local minima.

In the one plus one evolutionary optimizer, a parameter vector consists of pose
and shape parameters: \(\{p, \alpha\}\). A parameter vector represents an individual in an
evolution strategy. The fitness of an individual is determined by its objective function
value \(MS_R(p, \alpha)\). In our case, small values yield a high fitness and vice versa. In each
optimization step, a child individual is generated by mutating a parent individual. The
mutation is a random vector of multi-dimensional normal distribution with mean of the
parent individual and covariance matrix \(\Sigma^2\). The covariance matrix \(\Sigma^2\) is an identity matrix
at the beginning. It is increased by a factor \(c_{grow}\) if the child individual results in a smaller
objective function value than its parent individual does, and it is reduced by a factor
The factor c_{grow} is chosen between 1.01 and 1.1 as recommended in [109] and $c_{shrink} = c_{grow}^{-1/4}$.

In ShapeRegistrationCV, a model based registration method integrates the four components: transformation, deformation, objective function, and optimizer, in a framework that iteratively solves a nonlinear optimization problem. To initialize the pose and shape parameters, only the starting position of a polyp is required to be set by a user. The initial rotation is set to identity, the initial scaling is set to 1.0, and the initial shape parameters are set to 0.0. The final solution to the optimization problem is provided as a parameter vector containing values for pose and shape parameters. These values define a transformation and deformation that can be applied to the mean image in the shape prior model. The transformed and deformed mean shape image can be used as a polyp segmentation result.

An ideal polyp segmentation method will identify all the protrusion part of a polyp without any surrounding colon tissues. However, the transformed and deformed mean shape image does not precisely label a polyp boundary for two reasons. First, there is no guarantee that the optimizer can find the global optimal values that can transform and deform the mean shape image to be the same as a polyp to be segmented. This is because either the shape prior model cannot be deformed to a particular polyp given large polyp shape variances or the optimizer is trapped in a local minimum. Second, our polyp shape prior model contains a small region of surrounding colon tissues besides the protrusion part of a polyp (see Figure 4.3). These extra colon tissues are important in assisting the optimizer to estimate polyp pose. But, they prevent us from obtaining a precise segmentation of a polyp protrusion region.
We address this problem by employing a deformable registration to extract a polyp surface in the protrusion region of a polyp. The overall process is illustrated in Figure 4.9. By observation of the colon surface generated by the Chan-Vese model, as shown in Figure 4.9, we find that the colon surface precisely delineates a polyp boundary in the protrusion region. By manually labeling the polyp protrusion region in the mean image of a shape prior model and deformable registration between the mean image and the Chan-Vese segmentation image, we can obtain a protrusion region in the Chan-Vese segmentation image (green region in Figure 4.9). A subset of the colon surface which is inside the protrusion region is extracted as a polyp surface (red surface in Figure 4.9). We employ the demons algorithm [110, 111] as the deformable registration method. In Figure 4.9, we can see that, through the deformable registration,
the rectangular protrusion region in the mean image (white rectangular cube) is deformed to an approximately squared cube in the Chan-Vese segmentation image (green region).

4.3 Results

We test the proposed polyp segmentation method with 19 polyps using one polyp shape prior model. The model is constructed based on six training polyp (Figure 4.10), which are found by the method described in chapter three. PCA is applied to the level set images of six polyps; and three eigenvectors corresponding to the largest three eigenvalues are selected as mode images. The summation of top three eigenvalues is 96% of the summation of total eigenvalues in PCA, which indicates that the shape prior model represents 96% shape variances in the training polyps. Figure 4.3 shows the three modes of shape variance among training polyps.

![Figure 4.10 Six training polyps used in constructing a shape prior model.](image)

In the experiment, the initial position of a polyp is provided by a user. The weights for regularization terms in Equation 4-10 are set as follows: \(w_1 = 0.01, w_2 = 0.1, w_3 = 1.0 \). The initial translation \((t_{x0}, t_{y0}, t_{z0}) \) in Equation 4-10 is equal to the initial
position of a polyp. The initial scale \(s_0 \) in equation 4-x is set to 1.0 in most cases. In a few cases of small polyps with size around 6mm the initial scale is set to 0.7. The running time of three steps in the polyp segmentation process on a workstation, equipped with 2.4GHz quad-core dual CPUs and 6.0 GB RAM, are as follows: 4 seconds in Chan-Vese segmentation, 24 seconds in shape model based registration, and 5 seconds in deformation registration and polyp surface generation.

Figure 4.11 shows the minimization procedure of the objective function in the second step of ShapeRegistrationCV. The regularized mean square metric in Equation 4-10 is used as the objective function in this experiment. From the figure we learn that the objective function approaches its minimal value after about 200 iterations so that the
curve between 200 and 500 iterations is relatively flat. We set the optimizer’s maximum iteration to be 500 in order to provide a sufficient margin for the object function to reach its minimal value.

Figure 4.12 shows the segmentation results of 19 polyps from WFU and WRAMC datasets. For each row in this figure, a polyp name is shown in the first column; a slice of CT image around a polyp center is shown in the second column; a colon surface generated by the Chan-Vese model is shown in the third column; an automatically segmented polyp surface is shown in the fourth column; and an automatically segmented polyp surface (red) is overlapped with a manually segmented polyp surface (blue) in the fifth column. The dice coefficient between two surfaces (red and blue) is shown in the last column in each row. The dice coefficient is calculated according to Equation 4-11:

\[
dice \ coefficient = \frac{2 \times S_{overlap}}{S_{automated} + S_{manual}} \tag{4-11}
\]

where \(S_{automated}\) is the area of an automatically segmented polyp surface (red surface), \(S_{manual}\) is the area of a manually segmented polyp surface (blue surface), and the \(S_{overlap}\) is the area of the overlapped region between the red and blue surfaces.

<table>
<thead>
<tr>
<th>Polyp</th>
<th>CT Image</th>
<th>Colonic Surface</th>
<th>Chan-Vese Surface</th>
<th>Automatically Segmented Surface</th>
<th>DiceCoefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFU_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88.7%</td>
</tr>
<tr>
<td>WFU_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.6%</td>
</tr>
<tr>
<td>WFU_9</td>
<td></td>
<td></td>
<td></td>
<td>90.0%</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>WFU_10</td>
<td></td>
<td></td>
<td></td>
<td>86.7%</td>
<td></td>
</tr>
<tr>
<td>WFU_16</td>
<td></td>
<td></td>
<td></td>
<td>88.6%</td>
<td></td>
</tr>
<tr>
<td>WFU_17</td>
<td></td>
<td></td>
<td></td>
<td>86.0%</td>
<td></td>
</tr>
<tr>
<td>WFU_18</td>
<td></td>
<td></td>
<td></td>
<td>85.2%</td>
<td></td>
</tr>
<tr>
<td>WFU_19</td>
<td></td>
<td></td>
<td></td>
<td>82.9%</td>
<td></td>
</tr>
<tr>
<td>WFU_20</td>
<td></td>
<td></td>
<td></td>
<td>81.6%</td>
<td></td>
</tr>
<tr>
<td>WFU_23</td>
<td></td>
<td></td>
<td></td>
<td>91.3%</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.12 Segmentation results of 19 polyps. Each row, from left to right, shows a polyp name, a CT slice around the polyp center, a colon surface generated from the Chan-Vese model, an automatically segmented polyp surface, overlap between automatically segmented (red) and manually segmented (blue) polyp surfaces, and the dice coefficient between red and blue surfaces.

In order to assess how sensitive the polyp segmentation method is to the initial position, we segment a polyp six times with different initial positions. Figure 4.13 shows the six segmented polyp surfaces with the initial positions are represented as blue triangles in a slice of CT images. The initial positions are placed at the center of the polyp, inside the polyp but close to the boundary, and outside the polyp. In all cases, the polyp segmentation method generates a polyp surface that contains the major part of the polyp protrusion region. Therefore, the proposed polyp segmentation method can reliably generate polyp surfaces despite inaccurate initial positions. This desirable property plays a pivotal role in detecting polyps where initial positions are automatically generated by a computer program (please refer to chapter four).
We implement the ShapeRegistrationCV method in an open source software package 3D Slicer [112], which provides image analysis and visualization functions based on ITK [66] and VTK [113]. An interactive module in 3D Slicer, called CTCCADx, is implemented to assist CTC researchers in constructing polyp shape prior models and assist radiologists in segmenting polyps. The main user interface of the CTCCADx module is shown in Figure 4.14.

Figure 4.13 Segment polyp surfaces with different initial positions.
4.4 Discussions and Conclusion

We construct a polyp shape prior model based on level set images as described in section 4.2.1. However, a level set image is hard to obtain in practice. Usually, a level set image is generated based on a binary image which is obtained by manual segmentation. The manual segmentation is time consuming and subjective. We seek a method to construct a shape prior model that avoids the manual segmentation process. In CTC studies, the CT image has consistent pixel intensities for colon tissues. We implement a method that can construct a shape prior model using the original CT images based on the PCA algorithm. In our experiment, the shape prior model
generated based on CT images presents almost identical shape variances as the one generated based on level set images. This provides an opportunity to simplify the process of constructing shape prior models in the future. However, differences in these two shape prior models, the model built upon CT images and the model built upon level set images, prevent the former model from being utilized in ShapeRegistrationCV method. The differences are: 1) the pixel values in the mean shape image have a large range in the former model than in the later; 2) eigenvalues in the former model are much larger than the ones in the later. Using the former shape prior model in ShapeRegistrationCV, the un-regularized mean square error is so large that the weights for regularization terms in Equation 4-10 are hard to be determined. For example, the weights, w_1, w_2, w_3 in Equation 4-10, are set to 1000, 3000, 30000 in using a shape prior model built on CT images. By comparison those weights are set to 0.01, 0.1, and 1.0 in using a shape prior model built on level set images. How to integrate a shape prior model which is built on CT images into the proposed polyp segmentation method will be investigated in the future.

In conclusion, we propose a polyp segmentation method based on a shape prior model of polyps. This method consists of three steps: Chan-Vese model segmentation to segment colon tissues; shape model based registration to estimate a polyp’s pose and shape; and deformable registration to extract a polyp surface. After quantitative evaluation of the polyp segmentation method by comparing automatically segmented polyp surfaces and manually segmented polyp surfaces, we conclude that the proposed method can reliably identify a polyp surface that is similar to a polyp embedded in a shape prior model. In future, we will seek a method that can utilize parallel computing techniques to improve the speed of the segmentation, and a mechanism that will enable an interactive segmentation by a few mouse-clicks in order to improve the accuracy.
Chapter Five

False Positives Reduction in Polyp Detection

The purpose of CTC CAD is to assist radiologists in finding polyps. Recent development of CTC CAD includes automated identification of polyps in CTC images. The automatically identified polyps, polyp candidates, are provided by CTC CAD to a radiologist who will make a final decision whether a candidate is a polyp or a false detection. Reducing false detections in polyp candidates is essential in CTC CAD. This chapter provides an overview of a CTC CAD system and describes a method that utilizes pattern recognition techniques to reduce false detections. In our initial results, the new features derived from polyp segmentation results significantly improve the detection performance in our CTC CAD.

5.1 Introduction

A typical CTC CAD is a multi-step procedure consisting of four steps: segmentation of colonic wall, generation of intermediate polyp candidates, reduction of false positives, and presentation of detections. The first step, segmentation of colonic wall extracts a colon wall from abdomen CT images. This step prevents CTC CAD from processing non-colon tissue in the following steps. In the second step, possible polyp regions, which are called intermediate polyp candidates, are detected based on geometry and intensity properties characterizing polyps. Various approaches have been devised to identify intermediate polyp candidates based on curvature related features, such as the shape index and curvedness. After generation of intermediate polyp candidates, usually there are a large number of false positives in the candidates. This is because a high sensitivity is desired in order to avoid missing polyps in the candidates,
and a low specificity is usually the consequence of a high sensitivity at this step in CTC CAD. It is important to reduce the number of false positives as much as possible while maintaining a high sensitivity. In the third step, reduction of false positives, a number of pattern recognition algorithms are employed to train a classifier, which is designed to classify polyps from false positive detections in intermediate polyp candidates. In the last step, polyp candidates that are generated from a trained classifier are presented to a radiologist as the CAD detections. The location, 2D and 3D views, and the size or volume measurements are common information displayed in the presentation step. A radiologist can verify a detection in CAD as a polyp or reject it as a false positive detection based on his examination of the polyp candidate region. Since the topic of this chapter is false positive reduction, we describe the details of the third step in CTC CAD.

In the false positives reduction step, a pattern recognition algorithm is usually employed to train a classifier in order to find polyps from intermediate polyp candidates. A classifier is an algorithm that can assign each input to one of a given set of classes. In our case, the input is an intermediate polyp candidate and the given set of classes includes “polyp” and “false detection”. A classifier is trained to assign each intermediate polyp candidate to the “polyp” or “false detection” class. In a training process, a number of intermediate polyp candidates are examined and their class, “polyp” or “false detection”, are determined by a domain expert. Intermediate polyp candidate in the training data are fed to a classifier and the class of each candidate is provided to assist the classifier in learning the statistics in the training data. A number of pattern recognition algorithms can be found in [114].

An input to a classifier contains a number of properties called features. Features play a pivotal role in determining the classification performance of a trained classifier. In our CTC CAD, features of an intermediate polyp candidate are computed as the following. An intermediate polyp candidate is represented by a cluster of voxels
scattered in a candidate region, as shown in Figure 5.1 [115]. A voxel in a cluster is selected based on its shape index and mean curvature [116]. Then, for a cluster of voxels, the statistical operations, including mean, maximum, minimum, variance, skew, kurtosis, and contrast, are calculated on geometric properties such as shape index and curvature. The statistical values are the features for each intermediate polyp candidate [116]. Since these features are based on geometric properties, they are usually called geometric features. Besides the geometric features, we derive new features from the polyp segmentation results. The detailed description of the new features is provided in the next section.

![Figure 5.1 Examples of three intermediate polyp candidates. White dots represent voxels used to represent a candidate.](image)

In order to utilize pattern recognition techniques in reducing false positives in CTC CAD, two challenges need be addressed. The first challenge is to select an appropriate pattern recognition algorithm and set its parameters given a particular CTC CAD dataset. The second challenge is to handle the class imbalance problem, which means a highly imbalanced ratio of the positive and negative samples in a training dataset. We take a practical approach to address these two challenges.
5.2 Method

5.2.1 Select and tune a pattern recognition algorithm

A pattern recognition algorithm is employed to reduce false positives in our CTC CAD. There are a large variety of pattern recognition algorithms that makes the selection of an appropriate algorithm difficult and application dependent. Additionally, each pattern recognition algorithm usually has several parameters that need to be determined practically. For example, the number of hidden nodes in an artificial neural network should be determined based on how many features and samples in a training dataset. Determining parameters for a specific pattern recognition algorithm is a process to tune a classifier.

We address the issues of the selection of a pattern recognition algorithm and tuning a classifier by applying several algorithms with different parameters for each algorithm. Five pattern recognition algorithms are chosen based on their popularity in pattern recognition and CTC CAD research fields [117]: C4.5 decision tree, artificial neural network (ANN), support vector machines (SVMs), Bagging, and AdaBoost. For each algorithm, different parameters are set to an individual classifier. Then ten-fold cross validation results are used to compare each classifier’s performance.

Table 5-1 provides a summary of the pattern recognition algorithms used and the parameters explored for each algorithm. In C4.5, we manipulate the minimum number of instances per leaf (MNIPL), which controls the complexity of the tree structure. In ANN, we used a one-hidden-layer network with a sigmoid activation function for each node. We manipulate two parameters, the number of hidden nodes and the number of training epochs. In SVMs, we use two kernels, the polynomial and Gaussian radial basis function (RBF). We manipulate parameters for each kernel, i.e., the exponent in the polynomial kernel and the sigma in the Gaussian RBF kernel. In Bagging, we manipulate two
parameters, the number of iterations performed and the base component classifier (REPTree [95], C4.5, and ANN). In AdaBoost, we choose as weak learners: decision stumps [95], C4.5 decision tree, and ANN. And we manipulate the number of iterations performed with each weak learner.

Table 5-1: Pattern recognition algorithms selection and tuning

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parameter 1</th>
<th>Values</th>
<th>Parameter 2</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4.5</td>
<td>MNIPL</td>
<td>100 to 1000; step 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500 to 1500; step 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>Number of Hidden Nodes</td>
<td>2 to 100; step 20</td>
<td>Training Epochs</td>
<td>100 to 1000; step 300</td>
</tr>
<tr>
<td>SVMs</td>
<td>Exponent in Polynomial Kernel</td>
<td>1 to 5; step 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sigma in Gaussian RBF Kernel</td>
<td>0.01 to 0.2; step 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagging</td>
<td>Base Learner</td>
<td>C4.5 (MNIPL = 4500, 14000)</td>
<td>Number of Iterations</td>
<td>5 to 50; step 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>REPTree (MNIPL = 4500, 14000)</td>
<td></td>
<td>5 to 50; step 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN</td>
<td></td>
<td>5 to 50; step 5</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>Weak Learner</td>
<td>C4.5 (MNIPL = 4500, 14000)</td>
<td>Number of Iterations</td>
<td>5 to 50; step 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decision Stump</td>
<td></td>
<td>5 to 50; step 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANN</td>
<td></td>
<td>5 to 50; step 5</td>
</tr>
</tbody>
</table>

5.2.2 Balance two classes in intermediate polyp candidates

There are two classes in intermediate polyp candidates, “polyp” and “false detection”, which are positive and negative candidates in our CTC CAD. Usually there
are much more negative candidates than positive ones in a training data. For example, in the WFU dataset, there are only 31 positive candidates while there are over 24,000 negative candidates (the ratio of positive/negative is 0.0013). Directly training a classifier with this highly imbalanced data would likely result in poor or skewed classification performance.

We balance the two classes in a training dataset by oversampling positive candidates to match the number of negative ones. Two oversampling methods, random oversampling [118] and SMOTE [119], are employed. In the random oversampling method, positive candidates are duplicated to generate additional samples. In SMOTE, a synthetic sample is generated from linear interpolation of five samples. After oversampling, the ratio between positive and negative candidates is 1:1. Therefore, the training dataset in our CTC CAD is balanced.

5.2.3 Integrate polyp segmentation into polyp detection

We propose a polyp segmentation method in this dissertation and expect to reduce false positives in polyp detection using the segmentation results. The idea of using polyp segmentation results to detect polyps is the following. We segment a polyp in an intermediate polyp candidate region. If the polyp segmentation process succeeds, we classify the intermediate polyp candidate to the “polyp” class. Otherwise, we classify the intermediate polyp candidate to the “false detection” class. Two issues need to be addressed in order to integrate the polyp segmentation method in polyp detection.

The first issue is to automatically place an initial position in polyp detection. The polyp detection is an automatic process whereas the polyp segmentation is a semi-automatic process since the initial position is provided by a user. In polyp segmentation, a user provides the initial position by clicking inside a polyp in a CTC slice after visually examining the slice. In polyp detection, we devise a method to automatically generate an
initial position for each intermediate polyp candidate. An initial position for a polyp should be inside of the protrusion region of a polyp in order to make the polyp segmentation method obtain a polyp surface. Also the initial position should not be close to the boundary between a polyp and colon lumen, which is required by the Chan-Vese model in polyp segmentation method. To meet these two requirements, we utilize the shape index property of a voxel to automatically generate an initial position. Specifically, an intermediate polyp candidate consists of a cluster of voxels scattered in a candidate region. A voxel that has the largest value of the shape index is selected as a potential position. Usually, such a voxel is located at the tip of a polyp and close to the boundary between a polyp and colon lumen. Therefore, the potential position need be adjusted to move it toward a polyp center. We adjust the potential position by moving it along its image gradient direction, which usually points from colon lumen to a polyp center. In this way, the adjusted potential position meets both requirements described above: locates inside the protrusion region of a polyp and is not close to the boundary between a polyp and colon lumen.

The second issue is to determine whether a polyp segmentation process in an intermediate polyp candidate region is successful or failed. Polyp segmentation in a region that contains a polyp, which is a “polyp” candidate, will succeed and polyp segmentation in a region that does not contain a polyp, which is a “false detection” candidate, will fail. We employ a classification scheme to differentiate a “polyp” from a “false detection” based on new features derived from segmentation results. A deformation field (please refer to the deformable registration step in section 4.2.2.3 of chapter four) is used to derive new features: mean and variance of the deformation field magnitude. A deformation field is a vector image whose pixel type is vector rather than scalar in a 2D or 3D image [120]. For example, a gradient image in 2D is a vector image with each pixel represented by two scalars: a gradient in X direction and a gradient in Y
direction. In the deformable registration step of the polyp segmentation method, a deformation field is used to define the deformation from the mean polyp surface (the surface in the center of Figure 4.9 in chapter four) to a segmented polyp surface (the red surface in Figure 4.9 in chapter four). Figure 5.2 shows examples of the mean polyp surface (translucent green) and a segmented polyp surface (red) for two intermediate polyp candidates. As can be seen in this figure, the deformation between two surfaces for a candidate labeled as a “polyp” is smaller than the deformation for a candidate labeled as a “false detection”.

Figure 5.2 Examples of a mean polyp surface (translucent green) overlaid with a segmented polyp surface (red). The top left shows two surfaces for an intermediate polyp candidate labeled as “polyp”. The top right shows a different view of the surfaces. The bottom left shows two surfaces for an intermediate polyp candidate labeled as “false detection”. The bottom right shows a different view of the surfaces.

5.3 Results

According to Table 5-1, thousands of classifiers are trained and tested using 10-fold cross validation in our experiment. To obtain the computational resources necessary to accomplish this task in a reasonable amount of time, we used the computer cluster system at Wake Forest University - DEAC Cluster [121]. To evaluate each classifier’s classification performance, we rank them based on the sensitivity, specificity, and area
under the ROC curve (AUC). Table 5-2 lists the ranking results. For each ranking criterion, the top classifier with its parameters is listed in each row. The classifier's sensitivity, specificity, and AUC are shown in each row, too. In Table 5-2, we noticed that the ANN classifier in the second row has an extremely low sensitivity (0.09). This is because, in the second row, we ranked the classifiers according to the specificity; and this ANN classifier was selected as the top classifier due to its high specificity (0.99). This ANN classifier was over-trained with 42 hidden nodes and 1000 training epochs. By such observation, we concluded that the specificity alone is not an appropriate criterion upon which we can select the best performing classifier. Therefore, we used the combination of sensitivity, specificity, and AUC as the criteria and the C4.5 classifier with 4500 MNIPL (the last row in Table 5-2) was selected as the best performing classifier in our CTC CAD.

Table 5-2 Top classifiers according to different ranking criteria

<table>
<thead>
<tr>
<th>Rank Criteria</th>
<th>Classification Algorithm</th>
<th>Classifier's Parameters</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensitivity</td>
<td>Bagging</td>
<td>base learner: C4.5 with MNIPL=14000 iterations: 25</td>
<td>0.84</td>
<td>0.69</td>
<td>0.75</td>
</tr>
<tr>
<td>specificity</td>
<td>ANN</td>
<td>hidden nodes: 42 training epochs: 1000</td>
<td>0.09</td>
<td>0.99</td>
<td>0.75</td>
</tr>
<tr>
<td>AUC</td>
<td>AdaBoost</td>
<td>weak learner: decision stump number of weak learners: 25</td>
<td>0.72</td>
<td>0.82</td>
<td>0.84</td>
</tr>
<tr>
<td>sensitivity + specificity</td>
<td>C4.5</td>
<td>MNIPL: 45000</td>
<td>0.77</td>
<td>0.83</td>
<td>0.82</td>
</tr>
<tr>
<td>sensitivity + AUC</td>
<td>AdaBoost</td>
<td>weak learner: decision stump number of weak learners: 10</td>
<td>0.78</td>
<td>0.78</td>
<td>0.83</td>
</tr>
<tr>
<td>specificity + AUC</td>
<td>AdaBoost</td>
<td>weak learner: C4.5 with MNIPL=4500 number of weak learners: 20</td>
<td>0.31</td>
<td>0.96</td>
<td>0.81</td>
</tr>
<tr>
<td>sensitivity + specificity + AUC</td>
<td>C4.5</td>
<td>MNIPL: 4500</td>
<td>0.77</td>
<td>0.83</td>
<td>0.82</td>
</tr>
</tbody>
</table>
To evaluate the difference between two oversampling methods of random oversampling and SMOTE, we train a classifier using both randomly oversampled training data and SMOTE training data. The trained classifier’s sensitivity, specificity, and area under ROC curve (AUC) are shown in Figure 5.3, where 5.3.a contains the results using the randomly oversampled data and 5.3.b contains the results using SMOTE data. Since five pattern recognition algorithms are applied in the experiment, we choose one classifier from each algorithm. As can be seen in Figure 5.3, there are no significant differences in the results obtained using the two different oversampling methods. All results reported in this chapter are from runs utilizing the SMOTE oversampling method.

In order to study the new features derived from polyp segmentation results, we select ten CTC studies, which contains 11 polyps and 1315 intermediate polyp candidates in our CTC CAD. We run the polyp segmentation method with a computer generated initial positions for each intermediate polyp candidate. In 11 polyps, initial positions are correctly generated for ten of them except for one polyp (the 55th intermediate polyp candidate in CTC-0035\102_085500 in the WFU dataset). A deformation field is outputted in the segmentation process. The magnitude of each pixel
in the deformation field is calculated. And the mean and variance of the deformation field magnitude for each polyp candidate are plotted in Figure 5.4. In this figure, intermediate polyp candidates labeled as “polyp” are represented by red dots and candidates labeled as “false detection” are represented by blue dots. As can be seen, positive intermediate polyp candidates (“polyp”) have relatively small mean and variance. In comparison, a majority of negative intermediate polyp candidates (“false detection”) have relatively large mean and variance. This matches what we have visually observed from Figure 5.3 that the deformation of a “polyp” candidate is smaller than the deformation of a “false detection” candidate.

We implement a rule-based classifier to reduce false positives using the new features: the mean and variance of deformation field magnitude. This classifier classifies a candidate as “polyp” if the mean is <= 1.54 and the variance is <= 0.07, where the thresholds of 1.54 and 0.07 are selected from the maximum of mean and variance of polyps (red dots) in Figure 5.3. Before the C4.5 classification, there are 160 intermediate polyp candidates per study on average in our CTC CAD. After the C4.5 classification, 32 false positives per study with the sensitivity of 0.89 are obtained. Use the rule-based classifier, we reduce 79% of the false positives in the C4.5 classifier and obtain 7 false positives per study with the same sensitivity as the C4.5 classifier.
Figure 5.4 Illustration of the new features: the mean and variance of the deformation field magnitude. X-axis is the mean of the deformation field magnitude and Y-axis is the variance of the deformation field magnitude. Blue dots represent “false detection” intermediate polyp candidates and red dots represents “polyp” candidates.
5.4 Conclusion

We apply five pattern recognition algorithms in reducing false positives in our CTC CAD: C4.5 decision tree, ANN, SVMs, Bagging, and AdaBoost. For each algorithm, we tune a classifier by manipulating its parameters in order to obtain an optimal classification performance. A massive number of classifiers are trained and evaluated according to various ranking criteria. Based on the criteria of sensitivity, specificity, and AUC, we conclude that the C4.5 decision tree with 4500 minimum number of instances per leaf (MNIPL) is the best performing classifier in our CTC CAD. Furthermore, we address the class imbalance problem in CTC CAD by two oversampling techniques: random oversampling and SMOTE. According to the results obtained in our experiment, there is no significant difference in sensitivity, specificity, and AUC for classifiers that are trained by randomly and SMOTE oversampled CTC data.

We integrate the polyp segmentation method into polyp detection by automating the process of placing initial positions for intermediate polyp candidates. New features such as the mean and variance of the deformation field magnitude are derived from segmentation results. According to the initial results, we reduce 79% false positives in the C4.5 classifier in our CTC CAD and obtain 7 false positives per study with the sensitivity of 0.87 at last. Additional features can be derived from segmentation results to improve the false positives reduction in future, for example, shape parameters α_i, volume and texture information inside a segmented polyp surface.
Chapter Six

Patient-level Analysis and Future Directions

In this chapter, we conclude the dissertation with the discussion of patient-level analysis and future research directions. Different from polyp-level analysis, patient-level analysis focuses on information retrieved from a patient rather than individual polyps. Two types of features are explored in this chapter. We analyze the preliminary results of the patient-level analysis and discuss the potential research directions in polyp segmentation, polyp detection, and patient-level analysis.

6.1 Patient-level Analysis

The goal of CTC as a screening technique is to reduce CRC mortality by referring a subject with clinically significant polyps to colonoscopy for treatment. We believe that the use of CTC for optimally referring patients to colonoscopy has not been adequately addressed. There is a vast amount of data and meta-data available in a subject’s CTC study such as colon shape, colon centerline variation, etc. that are currently completely ignored when evaluating whether a subject should be referred for colonoscopy. A more optimal referral decision can be made than one based purely on the presence or absence of polyps.

Patient-level analysis assists radiologists in making a referral decision based on information retrieved from a patient rather than individual polyps. In comparison, polyp-level analysis focuses on features like shape index and curvature of one polyp candidate, and is designed to recognize polyps without false detections. Patient-level analysis, however, utilizes aggregated features of all polyp candidates in a CTC study, e.g., number and mean size of polyp candidates in a patient, to determine whether this
patient should be referred to colonoscopy. Besides the aggregated features, other features such as colon shape, colon centerline variation, and registration results between supine and prone studies, are valuable information in patient-level analysis.

We analyze two types of patient-level features from the CTC scan and have results that suggest their usefulness in our system. The first type aggregates polyp information. An interesting observation is that these features tend to discriminate between positive and negative patients by comparing the features after polyp candidate generation to the features after false positive reduction. We have not yet settled on the most pertinent features; however, Table 6-1 describes the current 22 candidate aggregate polyp features that we are investigating. Figure 6.1 shows some of the discriminant capability if a few of these features visualizing only the simplest linear discriminant function. (Note that these are based on 416 studies from the WRAMC dataset.) Some early results are given in Table 6-2.

Table 6-1 Potential patient-level, aggregated polyp features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of polyp candidates/polyps</td>
<td>Candidates are before false positive reduction, and polyp after.</td>
</tr>
<tr>
<td>Candidate/polyps size: mean/max/min/variance</td>
<td>Before and after false positive reduction</td>
</tr>
<tr>
<td>Confidence: mean/max/min/variance</td>
<td>Average of the TC and FC Below</td>
</tr>
<tr>
<td>TC Confidence: mean/max/min/variance</td>
<td>TC (true candidate) confidence value for those polyp candidates identified as polyps by false positive reduction.</td>
</tr>
<tr>
<td>FC Confidence: mean/max/min/variance</td>
<td>FC (false candidate) confidence value for those polyp candidates identified as non-polyps by false positive reduction.</td>
</tr>
</tbody>
</table>
Figure 6.1 Potential classifications of patient-level features. This represents an initial attempt to distinguish positive and negative patients (positive = 1 or more polyps >= 6 mm). Using a naïve linear Bayes classifier, sensitivity/specificity are .87/.52 and .87/54 for the left and right plots.

Table 6-2 Example results in feature discovery and selection. Classifier is naïve Bayes.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual inspection</td>
<td>N/A</td>
<td>Confidence mean, # polyps after FP reduction</td>
<td>0.97</td>
<td>0.52</td>
</tr>
<tr>
<td>Predictive value/redundancy</td>
<td>Best first</td>
<td>Polyp size mean after FP reduction, Confidence min</td>
<td>0.90</td>
<td>0.57</td>
</tr>
<tr>
<td>Predictive value/redundancy</td>
<td>Random</td>
<td>Polyp size mean, polyp size mean after FP reduction, confidence variance</td>
<td>0.97</td>
<td>0.57</td>
</tr>
</tbody>
</table>

We have made progress in feature discovery and feature selection for patient-level features, using a number of methods. We have also made excellent use of the WEKA system (Waikato Environment for Knowledge Analysis, University of Waikato, New Zealand). WEKA alone provides 13 criteria with 9 search methods, each with its own parameter options, resulting in a large combinatoric problem even for this one part of the overall system. Additionally, we have our own methods to incorporate and potentially those from other software packages. As an example, we intuitively chose, based on visualizing plots, the features in the left and right plots in Figure 6.1:
confidence mean, number of polyp candidates after FP reduction, and polyp candidate mean size. Even this simple approach using a naïve linear Bayes classifier achieves per patient sensitivity/specificity of .87/.52 and .87/.54. We expect that more complex classifiers and optimal feature selection will offer considerable improvement. We have also begun testing computational feature selection methods. As an example we use a best-first search with a criterion that evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. Four features were selected (out of 22 possible in Table 6-1). When the top two are used for classification, sensitivity/specificity are .97/.54. Keeping this same algorithm but using an exhaustive search, two features are discovered, which have no overlap with the four from the suboptimal approach. However, the results are skewed for this approach by outliers, emphasizing the importance of visualizing and interacting with the results of feature discovery. In another experiment, we use a random search and found seven important features. Of the top four, only two overlapped with the four found above. When combining feature selection with classifier design in the optimization loop, it is clear that there is still much to uncover. By including this process in the optimization loop for the entire system using cluster compute power, we hope to uncover information that is not obvious in a less ambitious approach.

The second feature type that we propose is based on whole or regional colon shape. We hypothesize that this may be a factor in polyp development due to fecal clearance and perhaps other factors. Examples of possible features include colon smoothness, diameter, colon length, number of folds, fold frequency and amplitude, colon wall thickness, etc. Additionally, how polyp candidates group where they appear in colon segments may be useful information. Further, the shape may describe a phenotype that reflects an underlying genotype that is prone to polyps or cancer [122]. While our work is preliminary, our first effort is to use the centerline to describe the colon
shape. And for each voxel of the centerline, we calculate its distance from boundary (DFB) -- colon wall, and distance from rectum (DFR). Figure 6.2 shows an example of centerline with DFB and DFR information. In this diagram, a circle represents the closest centerline voxel to its neighboring polyp candidate (negative after classification), a red plus is for false positive polyp candidate after classification, and red star represents the same for a true positive polyp candidate. We are investigating several properties of this information, including the Fourier transform and wavelets for possible clues to colons that may be at risk.

Figure 6.2 Plot of minimum centerline distance to the lumen. ‘+’ is intermediate polyp candidate. ‘o’ is candidate after false positives reduction. ‘*’ is a true positive confirmed in colonoscopy. Frequency or wavelet analysis of signal shape could be indicative of polyp or cancer risk. A hidden Markov model could be used for analysis.

6.2 Conclusions and Future Directions

In the polyp segmentation, we devised a new method to segment polyps using shape prior models and implement a system that can construct a polyp shape model, segment a polyp, and visualize segmentation results. Following topics can be investigated in the future:
1. Build shape prior models that cover all types of polyps regarding to their location and morphologic types.

2. Increase the speed of the segmentation process by utilizing parallel computing techniques.

3. Improve the accuracy of segmented polyp surface by using interactive image segmentation algorithms, such as the graph cuts.

In the polyp detection, we implement a method that select a pattern recognition algorithm for a particular classification task and tune a classifier to decide its parameters. By integrating the polyp segmentation method into the polyp detection, we significantly reduce false positives in our CTC CAD using new features. Following topics can be investigated in the future:

1. Improve the algorithm that automatically places an initial position in the polyp detection.

2. Derive more features from the polyp segmentation results such as shape parameters, polyp size, and volume/texture information inside a segmented polyp surface.

In the patient-level analysis, we discover a number of features including aggravated features from polyp information and colon shape features based on its centerline variation. Several feature selection methods in WEKA are tested and the results are encouraging. Following topics can be investigated in the future:

1. Obtain more patient-level features from the polyp segmentation and detection results.

2. Integrate the registration results of supine and prone studies into the patient-level analysis.

3. Improve the work-flow of patient-level analysis to provide assistive information for radiologist in making a referral decision.
The research work in this dissertation has three major contributions to the CTC CAD. First, we devised a new approach to segment and detect polyps based on polyp shape models. Second, we promoted the open source development in CTC CAD by utilizing 3D Slicer, ITK, and VTK. Third, we improved the classification system design in CTC CAD by comparing a group of classifiers and tuning their parameters.
REFERENCES

[106] H. Xu, D. Gage, P. Santiago et al., "Colorectal polyp segmentation based on geodesic active contours with a shape-prior Model," Proceedings of the MICCAI

[115] H. Xu, H. Gage, and P. Santiago, "An open source implementation of colon CAD in 3D slicer.”

[121] WFU DEAC. "http://www.deac.wfu.edu./

Scholastic Vita
Haiyong Xu

Education

- Ph.D. 2011
 Department of Biomedical Engineering
 Wake Forest University, Winston-Salem, NC

- M.Eng. 1998
 Department of Computer Science and Engineering
 Harbin Institute of Technology, China

- B.Eng. 1996
 Department of Automation Measurement and Control
 Harbin Institute of Technology, China

Professional Memberships

BMES Biomedical Engineering Society
MICCAI Medical Image Computing and Computer Assisted Intervention
RSNA Radiological Society of North America
SIIM Society for Imaging Informatics in Medicine
SPIE The Society of Photo-Optical Instrumentation Engineers

Awards and Scholarships

Graduate Fellowship, Wake Forest University 2006-2010

Professional Services

Journal reviewer: Medical Physics
Open-source community contributor: ITK, 3D Slicer
Publications

Peer-Reviewed Publications

H. Xu, H. D. Gage, P. Santago, and Y. Ge, "Colorectal Polyp Segmentation based on Geodesic Active Contours with a Shape-Prior Model," in Proceedings of the MICCAI 2010 Workshop on Computational Challenges and Clinical Opportunities in Virtual Colonoscopy and Abdominal Imaging. 2010

Manuscripts in Preparation

H. Xu, P. Santago, and H. D. Gage, “Use WEKA to select and tune a classifier in CTC CAD”

H. Xu and P. Santago, “An efficient group-wise registration method for polyp shape analysis”

H. Xu, H. D. Gage, P. Santago, and Y. Ge, “Polyp segmentation based on shape models in CTC CAD”

Abstracts and Presentations

H. Xu and P. Santago, “Polyp Segmentation and Detection in CT Colonography Using Geodesic Active Contours with Shape Prior,” in 9th Annual Graduate Student Research Symposium, School of Biomedical Engineering and Sciences, VT-WFU. 2010.

H. Xu and P. Santago, “3D Slicer based Virtual Colonoscopy CAD,” in 8th Annual Graduate Student Research Symposium, School of Biomedical Engineering and Sciences, VT-WFU. 2009.

H. Xu and P. Santago, “Using computer cluster to deal with model selection problem in pattern classification field,” in 7th Annual Graduate Student Research Symposium, School of Biomedical Engineering and Sciences, VT-WFU. 2008.