Continuities

ONIX-PL: An Adaptable Standard for E-Resource Licenses

By C. Derrik Hiatt

On April 18, 2013, the Digital Public Library of America (DPLA) was officially launched. The launch seemed to generate a lot of excitement, at least in the twittersphere. It seemed like everybody was talking about it. Later that same day, another (completely unrelated) announcement was made, with less fanfare. The National Information Standards Organization (NISO) announced that it had received a grant from the Andrew W. Mellon Foundation for a project to gather a collection of publisher licenses, encode them in ONIX-PL, and deposit the encoded versions into the Global Open Knowledgebase (GOKb), where they can be centrally stored and accessible to everyone.¹

Compared to the DPLA announcement, there was very little buzz about ONIX-PL; so it looks like I'm definitely in the minority here, but I was a lot more excited about the ONIX-PL announcement than the DPLA launch. Do not get me wrong—I was excited when I first heard about the DPLA and I am sure it will bring about good things. And I admit that ONIX-PL does not have the "sexiness" factor that DPLA does, but for the day-to-day work that I do, I think the ONIX-PL encoding project could have a more immediate impact. It has the potential to change the licensing process for online library resources, and to streamline the communication of license permissions to librarians and end users.

Disclaimer: I am not a techie although I am interested in that sort of thing. As a kid I liked to take toys apart to find out how they worked, but that does not mean I knew how to build them. So do not worry that I am going to lose you in technical details. On the flip side, I apologize for any gross oversimplifications or outright errors. You can email me (hiatted@wfu.edu) about such errors if you feel so inclined. Like I said, I am actually interested in this stuff.

What is ONIX-PL?

ONIX for Publications Licenses (ONIX-PL) is a standard communications format developed by the international standards organization EDItEUR, in partnership with the Digital Library Federation (DLF) and NISO.² I think of ONIX-PL as being like MARC for electronic-resource licenses. The standard was released several years ago and has been used successfully by Jisc (formerly the Joint Information Systems Committee) in the United Kingdom,
but uptake in the U.S. has been slow, practically nil. Learning to encode licenses in ONIX-PL is not easy, so there has not been much incentive to learn and start using the standard.

The grant that NISO received from the Mellon Foundation will enable NISO to give publishers and libraries a starting point. NISO has contracted with freelance e-resources librarian Selden Durgom Lamoureux to do the encoding. I had the great fortune of meeting with Selden at the 2013 North American Serials Interest Group (NASIG) Conference, where we had a delightful lunchtime chat about ONIX-PL and the encoding project. Much of what follows is taken from our conversation, plus a few other websites (listed at the end of this article).

Basically, ONIX-PL does for license agreements what MARC does for bibliographic records. MARC is a communication standard that allows bibliographic records to be shared between computers by standardizing the way they are encoded and it allows software programs to identify and interpret the elements of the bibliographic record and create a public catalog display. In much the same way, ONIX-PL standardizes the way the various elements of a license agreement are encoded and thus facilitates transmitting information about that license from one computer to another. Because it uses an XML database structure, ONIX-PL is extensible and adaptable, and is designed not only to encode specific license terms, but can also allow for more general license terms and deliberate ambiguities. Like MARC, standardizing the way license agreements are encoded also will allow programmers to develop software that can use license information in creative ways that we cannot yet anticipate.

At the 2009 NASIG Conference, there was buzz about this new licensing standard. I did not fully understand it then, only that it had something to do with encoding licenses electronically. But soon after that, it seemed like ONIX-PL fell off the radar. When I asked Selden about the slow uptake, she explained that ONIX-PL, while elegant, is also quite complex, as it must be in order to capture the variety and nuances of licenses. Learning to encode using the ONIX-PL editor requires a significant investment of time just as you could not have someone sit down at a computer, hand them some MARC documentation, and expect them to start cataloging. Because of the initial training required, it would not be very efficient to have every publishing company and every library train someone to encode licenses in ONIX-PL. So it has not been feasible for the scholarly communication industry (at least in the U.S.) to rapidly adopt ONIX-PL. With no one using it, there has been no incentive for software developers to incorporate the standard into library systems.

Encouraging ONIX-PL Use

NISO Executive Director Todd Carpenter had an idea to encourage ONIX-PL use—why not give everyone a head start? The idea was to gather a number of publisher-supplied licenses and encode them in ONIX-PL. Those encoded documents could then be stored in the Global Open Knowledgebase (GOKb), an open repository of metadata about electronic resources. (GOKb is being developed as part of the broader Kuali OLE Project; see gokb.org for more information.) The encoded licenses would then be available for anyone to use and publishers and librarians would have a starting place, rather than having to start from scratch.

The grant from the Mellon Foundation has enabled NISO to proceed with the project. NISO contracted with Selden Lamoureux to obtain and encode the licenses. The initial goal is to gather default licenses from 30 publishing companies. These unnegotiated licenses will be encoded and each publisher will be asked to approve the encoded form, ensuring that it accurately represents the publisher’s intent. The encoded licenses will then be deposited in GOKb, where they could be retrieved by librarians or publishers and used as models, or as a starting place for negotiation.

At the time of our conversation, Selden had received documents from four publishers—Duke University Press, Elsevier, Nature Publishing Group, and Springer—and others have agreed to send them. I am hopeful (and I believe Selden is, too) that having some of the large, respected publishers on board will help convince others to participate. It is hard to imagine that they would have anything to lose. Electronic communication of license elements, with the resulting efficiencies in the licensing process, should be a boon

(continued on page 14)
Continuities

ONIX-PL: An Adaptable Standard for E-Resource Licenses

(continued from page 13)
to publishing companies as much as to libraries.

The NISO encoding project will not attempt to evaluate license agreements. When encoding a document, there is no attempt to say whether it is a good or bad license and certainly no attempt to offer any legal interpretation. In general, the encoded form will simply tell the reader that a particular element—perpetual access rights, assignment, jurisdiction, etc.—is present in the license and where in the license it is found. For license elements dealing with how a resource can be used, like interlibrary loan and course packs, ONIX-PL can record more detailed information about what is permitted or prohibited. All of this is done using standardized language. To continue the MARC analogy, encoding in ONIX-PL is essentially descriptive cataloging for license agreements.

Using Encoded License Agreements

How does one use an encoded license agreement? For starters, it would help electronic-resource librarians manage the license review process. One of the difficulties of license review is that the agreements are all so different. ONIX-PL standardizes the terminology and allows more flexibility with the order in which license elements are presented. To illustrate the problem, some licenses may refer to “Inter-Library Lending,” others to “Interlibrary Loan,” and still others may describe the concept but not actually call it anything. There is also no standard place within license agreements for the various elements to appear, so the reviewer must search through the document to find the needed clause (without knowing what the particular document calls it). In ONIX-PL, any reference to interlibrary loan—regardless of how it is named in the license at hand—would go into the “SupplyCopy” field. Having a standardized vocabulary and order of presentation will help make it easier to comprehend the overall license agreement and understand the content provider’s intent.

Another advantage would become apparent when you decide to populate an electronic-resource management (ERM) system or migrate data from one ERM system to another. Once systems begin to speak the ONIX-PL language, this type of data movement will be much less painful. Data communication between software systems is the central intent behind, and arguably the greatest strength of, a communication standard like ONIX-PL.

Branching out from e-resource management, encoding license agreements in a standard, machine-readable format also facilitates communicating license permissions with library staff and end users. Imagine a setup where the library’s ERM, interlibrary loan, and course reserves systems all understand a standardized language. In such a setting, no one would need to call the electronic-resources librarian to ask about license permissions. Instead, the e-resources librarian enters the license information in the ERM system and the relevant information is automatically pushed out to the other software programs. The ILL librarian, course reserves librarian, and researchers would have the license permissions accessible at the point of need, in the systems where they are already doing their work.

As far as I know, no setup like that fully exists yet, although parts of it have been demonstrated. I am sure that other, more imaginative people will come up with much better applications. When I asked Selden how librarians, publishers, and others might initially use an encoded license they retrieve from GOKb, her response was “play with it.” She said she hopes people will learn how to use ONIX-PL, experiment with it, and discover what can be done with it. One thing that is so exciting about ONIX-PL is that it is open and extensible, bounded only by our imagination.

Derrik Hiatt is Electronic Resources Librarian at Wake Forest University, Winston-Salem, NC. He can be reached at hiatted@wfu.edu.

References and Notes


presentations/d-martin.

ppi (accessed July 9, 2013); 
editeur.org/21/ONIX-PL/ 
(accessed July 10, 2013); 
National Information Stan-
dards Organization, “ONIX-PL 
org/workrooms/onixpl (accessed 
July 10, 2013); Jisc, “ONIX for 
Licensing Terms,” www.jisc.
ac.uk/whatwedo/programmes/
pals2/synthesis/standards/olt 
(accessed July 10, 2013); Jisc, 
“XML Licenses: Expression of 
a Publisher/Library Licence,” 
www.jisc.ac.uk/whatwedo/
programmes/pals2/synthesis/
projects/olttemplates.aspx 

3. Any publishers who would like 
to know more about participating 
in the ONIX-PL encoding project 
can contact Selden Lamoureux at 
selden.lamoureux@gmail.com.

4. For information about GOKb,
see Kristin Antelman, “Bib 
Data Is Now More Open— 
What about Knowledge Base 
Data?” Kuali OLE (Oct. 5, 
com/post/32942331929/
bib-data-is-now-more-open-
what-about-knowledge-base 
(accessed July 9, 2013).

---

Derrik Hiatt is Electronic 
Resources Librarian at Wake Forest 
University, Winston-Salem, NC. He 
can be reached at hiattcd@wfu.edu.