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Abstract

Joel A. Barnett

Graph pebbling involves determining the minimum number of pebbles needed so that
regardless of the initial arrangement of pebbles on a graph, a pebble can be moved
to any vertex using specified “pebbling moves.” This minimum number of pebbles is
the pebbling number of a graph. We begin by making a brief exploration into path
pebbling, which uses a sequence of pebbling moves instead of a single pebbling move.
Returning to normal pebbling moves, we note that graph pebbling can be generalized
by looking at a target distribution of pebbles, rather than just reaching one vertex
with one pebble. We examine a contrast between pebbling on a labeled graph (where
the target distribution is fixed) and an unlabeled graph (where the target distribution
may be represented in multiple ways). We also seek to extend Jonas Sjöstrand’s Cover
Pebbling Theorem to make calculating some pebbling numbers easier.
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Chapter 1: Introduction and Background

We begin with an excursion into path pebbling and prove a path pebbling number

for all graphs. We follow by establishing some existing results in the view of labeled

graph pebbling while recalling characteristics of Cartesian products of graphs. We

then move to contrasting labeled and unlabeled pebbling, showing that labeled peb-

bling numbers are an upper bound for unlabeled pebbling numbers and showing when

the two values are equal. We then begin constructing labeled pebbling numbers for

small paths and products before making conjectures on some of the more general

cases.

For the remainder of the first chapter, we establish some terminology, existing

results, and framework for the remainder of the thesis. Chapter 2 includes the entirety

of our work on path pebbling, defining the problem and establishing an encompassing

result. In Chapter 3, we translate a few results into our labeled view before making the

first major distinction between unlabeled pebbling and labeled pebbling. In Chapter

4, we start working in specific path cases, showing results for small cases of paths and

products of paths. Chapter 5 is a list and discussion of conjectures for path graphs,

separated into different types of distributions, and Chapter 6 serves as a summation

of open questions from our work along with other untapped avenues of research.

1.1 General Graph Theory

We begin by introducing basic terminology and notation from graph theory. For any

graph G, we have V (G) and E(G), the vertex set and edge set of G, respectively. We

will generally denote vertices by letters and subscripts, v, vn, etc. For vertices x and

y, we denote the edge connecting them as xy. If two vertices are connected by more
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than one edge, we refer to these edges as multi-edges. The degree of a vertex is the

number of edges incident to it. Note that loops, edges with one vertex serving as both

endpoints, contribute 2 to a vertex’s degree.

Many simpler classes of graphs have shortened notation we will frequently use. A

path graph on n vertices, denoted Pn, is a connected set of n vertices where the middle

n− 2 vertices have degree two while the final two end vertices have degree one.

A cycle graph, Cn, is a connected graph on n ≥ 3 vertices where each vertex has

degree 2.

A cycle in any graph is a set of vertices V (along with the incident edges) such

that the subgraph V is a cycle graph. The length of a cycle is the number of edges

in the cycle. If a graph has no cycles, it is acyclic. A tree, commonly denoted T , is a

connected acyclic graph.

Finally, a spanning tree of a graph is a connected subgraph formed by deleting

edges of the graph until no cycles remain.

One idea in graph theory that we will make significant use of is that of graph

isomorphisms. We define an isomorphism from a graph G to a graph H as a bijec-

tion µ from V (G) to V (H) and from E(G) to E(H) such that if uv ∈ E(G), then
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µ(u)µ(v) ∈ E(H) [4]. If there is an isomorphism from G to H, we say that G and H

are isomorphic. Consider the following two graphs:

a b

cd

µ(a)

µ(b)

µ(c)

µ(d)

These two graphs are isomorphic, as there exists a one-to-one correspondence between

the vertices and edges. Alternatively, consider the following graphs.

a

b

c

d
e

v

w

x

y

z

While these two graphs have the same number of vertices and edges, they are not

isomorphic. Note that with any isomorphism, whichever vertex e is mapped to must

also be degree four, since the same number of edges will be incident to it. However,

there is no such vertex in the right graph, so these graphs cannot be isomorphic.

As another example of an isomorphism, consider the following two graphs:

a b

c d

e f

µ(a) µ(b)

µ(c) µ(d)

µ(e) µ(f)
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These two graphs are also isomorphic, as is explicitly shown.

The two examples above of isomorphisms show that isomorphic graphs can look

similar or very different. In our use of isomorphisms, we will focus on those isomor-

phisms which result in a graph that does look the same. This idea will factor heavily

into our contrasting of labeled and unlabeled pebbling in Chapter 3.

1.2 Cartesian Products

The Cartesian product of a pair of graphs G and H, denoted G�H (alternatively,

G × H), is defined by V (G�H) = {(gi, hj) 3 gi ∈ G, hj ∈ H} and E(G�H) =

{(gi, hj)(gk, h`) such that (gi = gk and (hjh`) ∈ E(H)) or (hj = h` and (gigk) ∈

E(G))} [2].

In much of the graph pebbling literature, Cartesian products of graphs play a large

role in many results and conjectures. Additionally, several significant pebbling results

are dependent on some properties of graphs. In particular, we examine diameter and

girth of graphs.

A path between u and v is a sequence of adjacent vertices between u and v with

no repeated vertices. The distance between two vertices in a graph is the length

of the shortest path between those two vertices (though the shortest path may not

be unique), denoted d(x, y) or dist(x, y) for vertices x, y ∈ V (G). The diameter of a

graph, diam(G), is the maximum of all the distances between pairs of distinct vertices

in a graph. If the graph is disconnected, then the graph has infinite diameter [4]. The

girth of a graph, girth(G), is the length of the shortest cycle in the graph. If the

graph is acyclic, the graph is said to have infinite girth [4].

In an effort to make this paper self-contained, we include results of the effect of

Cartesian products on the diameter and girth of graphs with a proof of the latter.

Lemma 1.1. Given two graphs G and H, each with finite diameter, diam(G�H) =
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diam(G) + diam(H). [5]

Lemma 1.2. For two graphs G and H, each with nonempty edge set, we have

girth(G�H) = min{girth(G), girth(H), 4}.

Proof. Let G and H be graphs with nonempty edge sets. Suppose girth(G) and/or

girth(H) is finite and at most 4. Note that girth(G�H) ≤ min{girth(G), girth(H)},

since G and H are subgraphs of G�H. We first show that loops, multi-edges, and tri-

angles in G�H imply their presence in G or H. For a loop in G�H, (g1, h1)(g1, h1) ∈

E(G�H), and so g1g1 ∈ E(G) or h1h1 ∈ E(H). For multi-edges in G�H, two edges

from (g1, h1) to (g1, h2) or from (g1, h1) to (g2, h1) are required (since (g1, h1)(g2, h2) /∈

E(G�H)), implying g1g2 and g1g2 in E(G) or h1h2 and h1h2 in E(H). For triangles

in G�H to not be in either G or H, we would have the vertices (g′1, h
′
1), (g′1, h

′
2),

and (g′2, h
′
i), which violates construction of G�H for i ∈ {1, 2}, since (g′2, h

′
1) is not

adjacent to (g′1, h
′
2), and (g′2, h

′
2) is not adjacent to (g′1, h

′
1).

Now suppose girth(G) and girth(H) are each either greater than 4 or infinite,

and consider adjacent vertices g1, g2 ∈ V (G) and h1, h2 ∈ V (H). In G�H, this

yields the four-cycle with vertices (g1, h1), (g2, h1), (g2, h2), and (g1, h2). As before,

no smaller cycles exist, since they would be triangles, multi-edges, or loops, and so

for girth(G), girth(H) > 4, girth(G�H) = 4.

H1

g1

g2

H2

g1

g2

Thus, girth(G�H) = min{girth(G), girth(H), 4}.
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1.3 Graph Pebbling

In graph pebbling, we assign a nonnegative integer to each vertex representing the

number of pebbles placed on that vertex. We then make pebbling moves in an attempt

to place a pebble onto an initially specified vertex called the root.

Definition 1.1. A pebbling move is defined as removing two pebbles from some vertex

v1 and adding one pebble on an adjacent vertex v2, denoted [v1, v2] [2].

v1 v2 v1 v2

Alternatively, this may be viewed as discarding one pebble as a cost or toll to move

another to an adjacent vertex. One significant fact of note we will make extensive

use of is that given two vertices vi and vj, moving one pebble from vi to vj requires

2dist(vi,vj) pebbles.

The general problem in graph pebbling is to compute for a graph G the minimum

number of pebbles p such that for any configuration C of p or more pebbles on G

and any root vertex r, we may make a sequence of pebbling moves from C to reach

r. This number p is called the pebbling number of G, generally denoted as f(G) or

π(G) [2]; we adopt the latter notation.

As a simple example, consider the following graph:
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The pebbling number of this graph is π(G) = 5. That is, no matter how we

arrange five pebbles on the vertices of this graph, we can always move a pebble to

any vertex through some sequence of moves.

Much work has been done in finding pebbling numbers of various classes of graphs.

One conjecture that has received much attention was made by Ron Graham. This

conjecture relates the product of the pebbling numbers of a pair of graphs with the

pebbling number of their Cartesian product.

Graham’s Conjecture. For all graphs G1 and G2, π(G1�G2) ≤ π(G1)π(G2) [2].

Graham’s Conjecture is still an open problem, but some progress has been made.

Of note, it has been proven to hold for the product of two trees and the product of

two cycles, so long as for Cm�Cn, m and n are not both in {5, 7, 9, 11, 13}, except for

C5�C5, which has been proven [2].

While much of the terminology surrounding graph pebbling is similar, we will

aim to make some standardization going forward. As we move into exploration of

target arrangements of pebbles rather than moving a single pebble to a single vertex,

there are now two arrangements which will be referenced. We will continue to use

“distribution” to refer to the “target arrangement” of pebbles on a graph. That is,

for a graph G, there is a function D : N ∪ {0} −→ V (G), assigning a number to

each vertex on G. This set of vertex/number pairs forms a distribution D. For any

particular vertex v, D(v) is the number of pebbles on v in D. A “configuration” C

is a nearly identical idea, but we reserve it for reference to the initial arrangement

of pebbles, and similarly to the notation for distributions, C(v) is the initial number

of pebbles on a vertex. If we begin with a configuration C and through a sequence

of pebbling moves are able to reach a distribution D, then we say “we may reach D

from C” or that “C is solvable” (with appropriate negations).

In [1], various generalizations of Graham’s conjecture are explored. Of particular
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interest is the generalization of the conjecture which applies to graphs and general

distributions of pebbles on those graphs, rather than just getting a single pebble to a

single vertex. This forms the basis of our research as we explore relationships between

the pebbling numbers of graphs when we differentiate by labeling a graph or leaving

it unlabeled and how these values and relationships compare to existing conjectures.

In particular, consider the following generalization of Graham’s Conjecture.

Conjecture 1.1. For graphs G1 and G2 with distributions of pebbles D1 and D2,

respectively, we have π(G1�G2, D1 ·D2) ≤ π(G1, D1)π(G2, D2) [1].

Our conjecture is similar, though we will use labeled graphs to make a similar

claim.

Conjecture 1.2. For graphs G1 and G2 with distributions of pebbles D1 and D2,

respectively, we have πL(G1�G2, D1 ·D2) ≤ πL(G1, D1)πL(G2, D2).

The labeled pebbling number of a graph and distribution πL(G,D), which we will

discuss in Chapter 3, is a variant of the original pebbling number in which we consider

reaching a distribution D on a labeled graph.

8



Chapter 2: Path Pebbling

Before focusing on labeled and unlabeled pebbling, we will consider another peb-

bling variant we call path pebbling. The primary difference for this variant is how

moves are defined. Contrasting to a normal pebbling move, a path pebbling move

consists of

1. removing |C(v0)| pebbles from a starting vertex v0

2. discarding a pebble as a cost

3. placing one pebble on each vertex of a sequence of i sequentially adjacent vertices

v1, v2, . . . , vi that form a path, denoted [v0, (v1, v2, . . . , vi)] where i = |C(v0)− 1|.

In the case where C(v0) − 1 > i and no other adjacent vertices are available, then

we simply leave the excess pebbles on vi. Just as in normal pebbling with pebbling

numbers, we define the path pebbling number of a graph G, πp(G), to be the fewest

number of pebbles such that for any configuration C of size πp(G) or greater, we can

place a pebble any root vertex r by making path pebbling moves starting from C.

We will begin with a lemma establishing a path pebbling number for trees. With

that in hand, we will extend the result to all graphs. Note that a leaf is a vertex of

degree one.

Theorem 2.1. For a tree T on n vertices, πp(T ) = n.

Proof. We will induct on the number of vertices of T . In each case, we will assume

that no pebbles begin on the root vertex r, else no moves are necessary. First consider

the base case n = 2. Note that if there is only a single pebble on T , then we may

place it on the non-root vertex, and no moves are possible, so the configuration is
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unsolvable. Now we assume there are two pebbles on T and no pebbles on r; then

there are two on the other vertex. In that case, a single path pebbling move puts a

pebble on r.

Now assume that T has n = k ≥ 2 vertices and that πp(T ) = k. Now we consider

the case n = k + 1. As above, if there are fewer than k + 1 pebbles on T , then

we may place one pebble on each non-root vertex. No moves are possible from this

configuration, so we cannot reach r.

Now assume that there are k+ 1 pebbles on T . Consider some leaf ` on T that is

not the root vertex. There are two cases to consider.

• If C(`) ∈ {0, 1}, then consider the subgraph T ′ = T − {`}. Then |C(T ′)| ∈

{k, k + 1} and |V (T ′)| = k. Thus by the inductive hypothesis, we may reach r

from C.

• If C(`) = p > 1, then make a path pebbling move [`, (v1, . . . , vp−1)]. Then

consider the subgraph T ′ = T − {`}. After the previous move, we have either

reached r, or we have |C(T ′)| = k and |V (T ′)| = k, and so by the inductive

hypothesis, we may reach r from C.

`

r

In any case, we see that we may reach r from C, and so πp(T ) = n.

Corollary 2.1. For any graph G on n vertices, πp(G) = n.

10



Proof. For any graph G, consider a spanning tree T of G. Then by Theorem 2.1,

πp(T ) = n, and the moves used on T to place a pebble on the root vertex r are

precisely the same as those used on G to place a pebble on r, and so πp(G) = n.
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Chapter 3: Labeled and Unlabeled Graphs

3.1 Extending Existing Results in the Labeled Pebbling View

Before beginning work contrasting labeled and unlabeled pebbling, we verify and

translate some results from normal graph pebbling to labeled and unlabeled peb-

bling. We now introduce definitions and notations for unlabeled and labeled pebbling

numbers.

Definition 3.1. Given a graph G and a distribution D of pebbles,

• the labeled pebbling number πL(G,D) of a graph G and a distribution of pebbles

D is the smallest number of pebbles such that for any configuration C with

|C| ≥ πL(G,D), we may reach D from C.

• the unlabeled pebbling number π(G,D) of a graphG and a distribution of pebbles

D is the smallest number of pebbles such that for any configuration C with

|C| ≥ π(G,D), we may reach D or some isomorphism of D from C.

We view an isomorphism of a distribution of pebbles in a similar way to an iso-

morphism of a graph.

Definition 3.2. Consider a graph G and an isomorphism µ of G. An isomorphism

µD of a distribution of pebbles D is a mapping µD : V (G) −→ V (µ(G)) such that for

all v ∈ V (G), D(v) 7−→ D(µ(v)).

As example of the distinction between labeled and unlabeled pebbling numbers,

consider the following graph and distribution:

12



a 1

b

2 c

2

In calculating the labeled pebbling number of this graph and distribution, we

need only examine this fixed distribution. However, when calculating the unlabeled

pebbling number, it is sufficient to be able to reach any of the distributions below

from configurations.

a 1

b

2 c

2

a 2

b

1 c

2

a 2

b

2 c

1

For the following propositions, we introduce the following notation and definitions.

For a graph G and a set of distributions S, we define π(G,S) as the smallest number of

pebbles p such that for any configuration of p pebbles, we may reach any distribution

D ∈ S. Also, note that πt(G, v) and πt(G) represent the t-pebbling number of a graph

G and vertex v. Similar to existing definitions, πt(G, v) is the smallest number of

pebbles p such that for any configuration C with |C| ≥ p, t pebbles may be moved to

v. πt(G) is defined similarly, that is, the smallest number of pebbles p such that for

any configuration of p or more pebbles, we may move t pebbles to any vertex on G.

Now consider Proposition 1.1 from [1].

Proposition 3.1. Let G be any graph, and let S and S ′ be two sets of distributions

on G. Then the various pebbling numbers are related as follows.

1. We have π(G,S) = maxD∈S π(G,D).

13



2. In particular, π(G) = max
v∈V (G)

π(G, v) and πt(G) = max
v∈V (G)

πt(G, v).

3. Furthermore, if S ⊆ S ′, then π(G,S) ≤ π(G,S ′).

Now we translate and prove this proposition for labeled pebbling numbers. We

establish a few definitions for use in this proposition and proof, primarily the various

types of pebbling numbers.

If S is a set of distributions D on a graph G, then πL(G,S) is the smallest number

of pebbles p such that for any configuration C of size at least p, we may reach any of

the distributions in S from C. The notation πL(G, v) represents the smallest number

of pebbles p needed so that for any configuration C with |C| ≥ p, we may move a

pebble to v; the notation π(G) above is the original pebbling number of G, and so

the notation reflects the lack of dependence on a particular vertex. We will denote

πL,t(G, v) and πL,t(G) with similar labeled notation for the t-pebbling number.

Proposition 3.2. Let G be any graph, and let S and S ′ be two sets of distributions

on G. Then the various pebbling numbers are related as follows.

1. We have πL(G,S) = max
D∈S

πL(G,D).

2. In particular, πL(G) = max
v∈V (G)

πL(G, v) and πL,t(G) = max
v∈V (G)

πL,t(G, v).

3. Furthermore, if S ⊆ S ′, then πL(G,S) ≤ πL(G,S ′).

Proof. 1. Let D ∈ S. Then πL(G,S) ≥ πL(G,D), since we need a sufficient

number of pebbles to solve D. Now let M = max
D∈S

πL(G,D). Let D0 be a

distribution such that πL(G,D0) = M . Since πL(G,S) ≥ πL(G,D0), then

πL(G,S) ≥ max
D∈S

πL(G,D).

14



Now let M = max
D∈S

πL(G,D). Then M ≥ πL(G,D) for all D ∈ S. That is,

given M pebbles, we may reach D for all D ∈ S. Then by definition, M =

max
D∈S

πL(G,D) ≥ πL(G,S). So πL(G,S) = max
D∈S

πL(G,D).

2. Let v ∈ V (G). Then πL(G) ≥ πL(G, v), since we must have a sufficient number

of pebbles to reach v. Now let v′ ∈ V (G) be a vertex such that πL(G, v′) =

max
v∈V (G)

πL(G, v). Then πL(G) ≥ πL(G, v′) = max
v∈V (G)

πL(G, v).

Now take M = max
v∈V (G)

πL(G, v). Then M ≥ πL(G, v) for each vertex on G. That

is, for a configuration of M pebbles, we may move a pebble to any vertex v on

G. Thus we have max
v∈V (G)

πL(G, v) ≥ πL(G), and so πL(G) = max
v∈V (G)

πL(G, v).

Similarly, let w ∈ V (G). Then πL,t(G) ≥ πL,t(G,w), since we must have a

sufficient number of pebbles to move t pebbles to w. Now let w′ ∈ V (G) be a

vertex such that πL,t(G,w
′) = max

w∈V (G)
πL,t(G,w). Then πL,t(G) ≥ πL,t(G,w

′) =

max
w∈V (G)

πL,t(G,w).

Now take M = max
w∈V (G)

πL,t(G,w). Then M ≥ πL,t(G,w) for each other vertex

on G. That is, for a configuration of M pebbles, we may move t pebbles to

any vertex w on G. Thus we have max
w∈V (G)

πL,t(G,w) ≥ πL,t(G), and so πL,t(G) =

max
w∈V (G)

πL,t(G,w).

3. Assume S ⊆ S ′. Then S ′ contains all distributions in S; additionally, if S is a

proper subset, then S ′ contains other distributions. πL(G,S ′) must be at least

πL(G,S) (since the distribution of highest pebbling number in S is also in S ′),

so there exists a D such that πL(G,S) = πL(G,D). Now, since D ∈ S ′, then

πL(G,S ′) ≥ πL(G,D) = πL(G,S).
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3.2 Contrasting Labeled and Unlabeled Graphs

We now return to contrasting labeled and unlabeled pebbling numbers. We begin by

illustrating the difference between πL(G,D) and π(G,D) (the labeled and unlabeled

pebbling numbers of a graph and distribution, respectively).

In the figure below, we have a graph G and a distribution D of pebbles on the left

side. The right side represents an isomorphism µ on G and D – this isomorphism is a

simple reflection mapping vi to vn+1−i. When calculating the labeled pebbling number

πL(G,D), we would simply seek to reach the left distribution from starting configu-

rations. In contrast, when we calculate the unlabeled pebbling number π(G,D), we

would seek to reach either D or µ(D) from starting configurations.

1

v1

2

v2

3

v3

4

v4

4

µ(v4)

3

µ(v3)

2

µ(v2)

1

µ(v1)

For the above graphs, we can calculate that πL(G,D) = 49 and π(G,D) = 19. We will

explore deriving these values later in the section. An immediate takeaway from this

is that calculating unlabeled pebbling numbers may be more challenging than their

labeled brethren, especially for graphs with multiple isomorphisms. As the number

of symmetries grows, then that many more distributions must be considered when

determining whether or not a given configuration is solvable. In particular, consider

the cycle graph C5:

v1

v2

v3v4

v5
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In this graph alone, there are five reflectional symmetries and five rotational symme-

tries; that is, when determining the solvability of a configuration on this graph, we

could be forced to consider up to ten different distributions.

Proposition 3.3. For a graph G with a distribution of pebbles D, π(G,D) ≤

πL(G,D).

Proof. Let G be a graph with a distribution of pebbles D. Consider a configuration

of pebbles C with |C| = πL(G,D); thus we can reach D from C. Note that D is an

isomorphism of itself (the identity isomorphism). Thus π(G,D) ≤ πL(G,D).

In many situations, labeled pebbling numbers will be strictly greater than their

unlabeled counterparts. In particular, consider the following graph and distribution

of pebbles.

a b c d

1 1 1 3

As we will see in the Cover Pebbling Theorem [3], we need only consider configu-

rations with all pebbles on a single vertex. As such, we compute the minimum size of

simple configurations on each vertex that will allow us to reach the given distribution.

For vertex a, we see that we need 8 · 3 + 4 · 1 + 2 · 1 + 1 · 1 = 31 pebbles. By similar

calculations, we see that we need 17 pebbles on b, 13 pebbles on c, and 15 pebbles on

d. Thus we conclude that the pebbling number is πL(G,D) = 31.

Consider vertex a. In the labeled situation, we would require 31 pebbles on a to

reach the distribution. However, now consider the isomorphism µ defined by µ(a) = d,

µ(b) = c, µ(c) = b, and µ(d) = a. In the labeled case, a simple configuration with

15 pebbles on a is unsolvable. However, by considering 15 pebbles on µ(a), we see

that we can, in fact, reach D. Similarly, by considering a necessary configuration on
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b, instead of requiring 17, we may then invoke µ to see that we actually only need 13

pebbles from µ(b). Therefore, the largest necessary simple configuration possible is

15, so the unlabeled pebbling number of this graph and distribution is π(G,D) = 15.

However, there are situations for which equality holds. In particular, symmetric

distributions will yield equality.

Definition 3.3. A distribution D of pebbles on a graph G is symmetric (or invariant

under isomorphism) if for any isomorphism µ(G) and all vertices v, D(v) = D(µ(v)).

The use of “symmetric” is very intuitive when dealing with paths (simple reflec-

tive symmetry), cycles, and complete graphs (reflective and/or rotational symmetry),

though for many other graphs, the intuitive approach may fall a bit short. Consider

the tree from Chapter 1 with two different distributions shown below:

4 2

4 2

4 2

2 1 3

3 1

3 1

3

The distribution on the tree on the left is symmetric, since under isomorphism,

it remains the same. However, the distribution on the tree on the right is not a

symmetric distribution, as we could effectively “switch” the the pairs of vertices on

the left and upper right sides to yield a different distribution.

Theorem 3.1. For a graph G and a symmetric distribution of pebbles D, π(G,D) =

πL(G,D).

Proof. Let G be a graph with a symmetric distribution of pebbles D, and let C be a

configuration of pebbles such that |C| = π(G,D).

18



Assign labels to the vertices of G, and note the sequence of pebbling moves

needed to reach D from C. Let µ be an isomorphism from G to µ(G). Consider

a configuration C∗ defined by C∗(v) = C(µ(v)). For each pebbling move [u, v]

in the sequence of moves from C to D, we use the move [µ(u), µ(v)] to reach D

from C∗ since D(v) = D(µ(v)) for each vertex of G. Therefore, we have that

πL(G,D) ≤ π(G,D). From Proposition 3.3, we have π(G,D) ≤ πL(G,D), so we

have π(G,D) = πL(G,D).

It is worth noting that the converse of the previous result isn’t true in general;

that is, given a graph G and distribution of pebbles D, if π(G,D) = πL(G,D), then

the distribution of pebbles isn’t necessarily symmetric.

Before constructing a counterexample for the converse of Theorem 3.1, we will

reproduce Jonas Sjöstrand’s Cover Pebbling Theorem and its proof [3]. This allows

for significantly simpler calculation of pebbling numbers during construction. First,

we begin with a few definitions local to the theorem and proof. We will modify the

original statement and proof to be in line with our terminology along with minor

elaboration on some points.

Definition 3.4. Definitions used in the theorem and proof:

• A cover distribution D on a graph G is a distribution such that D(v) > 0 for

all v ∈ V (G).

• Let w be a distribution of pebbles. A w-cover is a distribution of pebbles such

that every vertex has at least as many pebbles as in w. w(v) is the number

of pebbles on v in w. We generally assume that w is positive, that is, for all

v ∈ V (G), we have w(v) > 0. For example, consider this previous graph and

distribution:
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a b c d

1 1 1 3

In this case, a w-cover for this graph is w(a, b, c, d) = (1, 1, 1, 3), adopting a

compact notation similar to the normal notation for distributions.

• The w-cover pebbling number is the smallest n such that from any configuration

of n pebbles, it is possible to obtain a w-cover via a sequence of pebbling moves.

• A vertex v is fat, thin, or perfect if the number of pebbles on it is greater than,

less than, or equal to w(v), respectively.

• A simple configuration is one in which all pebbles begin on a single vertex.

• The cost from a vertex v of a pebble on a vertex u is 2d(u,v), and the sum of the

costs from v of all pebbles in w is the cost of cover pebbling from v.

• The value of a pebble is the sum of the value of the pebbles removed to place it.

For example, in a pebbling move, removing two pebbles of value 1 from a vertex

places a pebble of value 2 on an adjacent vertex. Removing this new pebble

and an existing one of value 1 on the same vertex places a pebble of value 3 on

an adjacent vertex.

Cover Pebbling Theorem (Sjöstrand). Let w be a positive distribution. To deter-

mine the w-cover pebbling number of a (directed or undirected) connected graph, it is

sufficient to consider simple configurations. In fact, for any unsolvable configuration

of size p, we may place p pebbles on one of the fat vertices [Footnote: Of course, this

is not true if there are no fat vertices, but then any vertex will do.] with this new

simple configuration still unsolvable. [3]

For the proof of this theorem, we will be using much of the original text, adding

in some elaboration and details on certain points.
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Proof. Start with a configuration that admits no cover pebbling. The goal will be to

approach the contrapositive of the original statement, that is, if an arbitrary configu-

ration cannot be solved, then no simple configuration of the same size can be solved.

An arbitrary unsolvable configuration C will be assumed, and it will be shown that

no simple configuration of the same size can be solved.

Assume there are no fat vertices in C. Then |C| < |w|, since each vertex v may

have at most w(v) pebbles on it, and at least one vertex must have fewer (else C = w).

We can remove all |C| = J pebbles from the graph and place J pebbles on any vertex.

The cost of cover pebbling from this vertex is no less than the number of pebbles in

w, since for any vertex v of distance d from our starting vertex, we require 2d pebbles

to move one pebble to v. As such, we lack sufficient pebbles to get back to our

non-simple configuration, much less reach w.

If some vertex is fat, we will have to do some pebbling. At the beginning, all

pebbles will have a value of one. During the pebbling we will always maintain the

following efficiency condition: Every pebble has a value no greater than the cost from

its nearest fat vertex (the fat vertex that minimizes this cost). The value of a pebble

on a fat vertex will therefore be bounded by the nearest fat vertex that it isn’t on.

Note that the efficiency condition is trivially satisfied before any pebbling is done

(since all the pebbles have value of one).

Now pebble like this: Among all pairs (f, t) of a fat and a thin vertex, take one

that minimizes the distance d(f, t). Let fp1p2 · · · pd−1t be a minimal path from f

to t. Every inner vertex pi of this path must be perfect, since if it were thin, then

(f, pi) would be a (fat, thin)-pair with d(f, pi) < d(f, t), and if it were fat, then (pi, t)

would be a (fat, thin)-pair with d(pi, t) < d(f, t). Furthermore, f must be a nearest

fat vertex to t and to every pi. Now we use two pebbles from f to move to p1. p1

must have at least one other pebble on it (since w is a positive distribution), so we
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use the new pebble on p1 together with any other pebble from p1 to move a pebble to

p2; then we use the new pebble and another one on p2 to move to p3, repeating this

process until we move a pebble onto t.

The value of the new pebble on t is 2 plus the sum of the values of the old pebbles

on p1, . . . , pd−1 that were consumed. By the efficiency condition this is no greater

than 2 + 21 + 22 + · · · + 2d−1 which equals 2d. Recall that the cost to pebble from

f to t is 2dist(f,t), and thus the condition is satisfied even after this operation. It is

possible that f is no longer fat, but this only makes it easier to fulfill the condition,

since any other fat vertices on the graph must be at least as distant as f .

We iterate the above procedure (choosing a new pair (f, t) and so on) until no

vertex is fat. During each iteration the total number of pebbles on fat vertices de-

creases, and no new fat vertices are created, since any thin vertices either remain thin

or become perfect during the algorithm (since an iteration places a pebble on a thin

vertex, the vertex will have at most as many pebbles as in w), and any perfect vertices

between a fat-thin pair become thin (since each will gain one pebble and then lose

two during the algorithm), so we cannot continue forever.

Let f ′ be the fat vertex that survived the longest, and denote the current configu-

ration as C ′. Each pebble remaining on the graph has value at most equal to its cost

from f ′. But there are still thin vertices (since we assumed the initial configuration

was unsolvable). Then by placing v pebbles (where v is the total value of all pebbles

on the graph) on f ′, we can reach C ′, but not the distribution w; thus the cost of cover

pebbling from f ′ exceeds the total value of the pebbles. Therefore, cover pebbling

is not possible with all pebbles initially on f ′, since an arbitrary configuration being

unsolvable implies that a simple configuration of the same size is also unsolvable.

We note that by considering a graph with labeled vertices, the above proof under-

goes no alteration. Translation of the result gives us the following corollary.
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Corollary 3.1. If D is a cover distribution on a labeled graph G, then it is only

necessary to consider simple configurations in calculating πL(G,D).

With this in hand, we return to the converse of Theorem 3.1. Consider the fol-

lowing graph and distribution:

3 1 1 6 1
a b c d e

Note that this distribution is not symmetric. We assert that for the above graph

and distribution, πL(G,D) = π(G,D) = 73.

First note that there exists an unsolvable distribution of 72 pebbles on the labeled

graph. Consider placing 72 pebbles on a. We require 16 pebbles to move one pebble

to e, 6 · 8 = 48 pebbles to move six to d, 4 to move one to c, and 2 to move one to

b. However, the listed moves require 70 pebbles, leaving two on a, one short of the

three we require.

With the above process in mind, we note that 73 is precisely enough to reach D

from a, and from Sjöstrand’s theorem, we need only consider simple configurations.

Additionally, note that a simple configuration on e large enough to reach D requires

73 pebbles as well by the same process. Observe that we require 3 · 16 = 48 pebbles

to move three to a, 8 to move one to b, 4 to move one to c, 6 ·2 = 12 to move six to d,

and one for e. The sum of these required values is 73. Through similar calculations

we can see that these values are strictly greater than the minimum sizes of required

simple configurations on vertices b, c, and d.

Now consider the unlabeled pebbling number of the graph. As noted before, we

aim to reach D or Dµ for some isomorphism µ. That is, we aim to reach D or the

reflection of D. Again, as before, there exists an identical unsolvable distribution of

72 pebbles on a. Even by considering a configuration beginning on µ(a), we see that
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72 pebbles is still insufficient to reach D. For a simple configuration on either a or

e, then, we require 73 pebbles, even if we try to reach µ(D) instead of D. Thus,

π(G,D) = 73 as well.
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Chapter 4: Stepping into Products of Paths

Before continuing, notation and a definition must be introduced. Given two graphs

G and H with respective distributions DG and DH , denote the product of the graphs

and distributions as (G�H,DG ·DH). For arbitrary vertices g ∈ V (G) and h ∈ V (H),

we define DG ·DH by D((g, h)) = DG(g)DH(h).

With this, we move on to pebbling numbers for particular paths. We begin with

P2 and then consider the product P2�P2.

Proposition 4.1. For P2 with a distribution D of pebbles on vertices v1 and v2, then

πL(P2, D) = max{D(v1) + 2D(v2), D(v2) + 2D(v1)}.

Proof. Consider P2 and a distribution D. Without loss of generality, assume D(v1) ≤

D(v2), so D(v1) + 2D(v2) ≥ D(v2) + 2D(v1). Then we assert that πL(P2, D) =

D(v1) + 2D(v2).

We begin by establishing an unsolvable configuration of greatest size. Consider a

configuration C defined by C(v1) = D(v1) + 2D(v2) − 1, C(v2) = 0. In one case, if

D(v1) = 0, then we may make D(v2)−1 moves to put D(v2)−1 pebbles on v2, leaving

one pebble on v1. D has not been reached, and no moves towards D are possible. In

the second case, if D(v1) 6= 0, then we may make D(v2) moves to put D(v2) pebbles

on v2, leaving D(v1) − 1 pebbles on v1. As before, D has not been reached, and no

moves remain to do so. Thus πL(P2, D) ≥ D(v1) + 2D(v2).

Now we show that D(v1) + 2D(v2) pebbles in any configuration is sufficient to

reach D. In the first case, if D(v1), D(v2) 6= 0, then Sjöstrand’s theorem [3] gives us

the desired result, as a simple configuration on v1 will require D(v1)+2D(v2) pebbles

(greater than D(v2) + 2D(v1) by assumption).
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As a second case, assume that D(v1) = 0. Then we claim πL(P2, D) = 2D(v2).

Note a simple configuration C defined by C(v1) = 2D(v2), C(v2) = 0 is solvable. Now

consider a configuration C ′ defined by C(v1) = 2D(v2)− x,C(v2) = x for x < D(v2)

(else the configuration is trivially solvable). If 2D(v2) − x is even, then x = 2n for

some n ≥ 1, and we may move D(v2) − n pebbles from v1 to v2. As a result, v2

now has D(v2) − n + 2n ≥ D(v2) pebbles on it, and so C ′ is solvable. In the case

where 2D(v2) − x is odd, then x = 2m − 1 for some m ≥ 1. We may then move

D(v2) − m pebbles to v2. Similarly to the previous case, we find that v2 now has

D(v2)−m+ 2m− 1 ≥ D(v2) pebbles on it, and so C ′ is solvable.

With this result in hand, we now move to the next result.

Theorem 4.1. Given P2, the path on two vertices, and distributions D1 and D2,

πL(P2�P2, D1 ·D2) = πL(P2, D1)πL(P2, D2).

Proof. Consider two P2 graphs with v1, v2 and w1, w2 as each graph’s respective ver-

tices. Let D1 and D2 be distributions on each graph. Then by Proposition 4.1,

we have πL(P2, D1) = max{D1(v1) + 2D1(v2), D1(v2) + 2D1(v1)} and πL(P2, D2) =

max{D2(w1) + 2D2(w2), D2(w2) + 2D2(w1)}. Without loss of generality, assume that

D1(v1) ≤ D1(v2) and D2(w1) ≤ D2(w2), so πL(P2, D1) = D1(v1) + 2D1(v2) and

πL(P2, D2) = D2(w1) + 2D2(w2). This gives us πL(P2, D1)πL(P2, D2) = (D1(v1) +

2D1(v2))(D2(w1) + 2D2(w2)).

Now consider the graph P2�P2 with distribution D = D1 ·D2. Then D((vi, wj)) =

D1(vi)D2(wj) for i, j ∈ {1, 2}. Since D1(v1) ≤ D1(v2) and D2(w1) ≤ D2(w2),

then D((v1, w1)) ≤ D((v1, w2)) ≤ D((v2, w2)) and D((v1, w1)) ≤ D((v2, w1)) ≤

D((v2, w2)). There are three cases to consider: (1) D1 and D2 are both covers,

(2)neither D1 nor D2 is a cover, and (3) D1 is not a cover, but D2 is.

Case 1: If D1 and D2 are covers, then so is D. Since D is a cover, then the
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Cover Pebbling Theorem allows us to restrict our approach to simple configura-

tions. We choose the initial configuration C given by C((v1, w1)) = D1(v1)D2(w1) +

2(D1(v2)D2(w1) + D1(v1)D2(w2)) + 4D1(v2)D2(w2). We note that C ′ defined by

C ′((v1, w1)) = C((v1, w1)) − 1 is unsolvable. We could move D1(v2)D2(w2) pebbles

to (v2, w2), D1(v1)D2(w2) pebbles to (v1, w2), and D1(v2)D2(w1) pebbles to (v2, w1).

However, this leaves us with D1(v1)D2(w1)− 1 pebbles on (v1, w1), and so we cannot

reach D. A similar issue arises if we make moves last to some other vertex.

Observe that we may reach D from C by moving 2D((v2, w2)) pebbles from (v1, w1)

to (v1, w2) or (v2, w1), and then D((v2, w2)) pebbles from there (v2, w2), thus reaching

D. We claim that this simple configuration is the maximum of the four possible

configurations. If we assume another was larger (the one beginning on (v1, w2), for

example), then we will show that a contradiction arises.

First note that for a simple configuration beginning on (v1, w1), we require (as

noted above) D((v1, w1))+2D((v2, w1))+2D((v1, w2))+4D((v2, w2)) pebbles to reach

D. If the configuration was on (v1, w2), then we require D((v1, w2)) + 2D((v1, w1)) +

2D((v2, w2)) + 4D((v2, w1)) pebbles to reach D. Consider

C((v1, w1)) = D((v1, w1)) + 2D((v2, w1)) + 2D((v1, w2)) + 4D((v2, w2))
= D(v1)D(w1) + 2D(v2)D(w1) + 2D(v1)D(w2) + 4D(v2)D(w2)
= (D(v1) + 2D(v2))(D(w1) + 2D(w2)),

and similarly,

C((v1, w2)) = D((v1, w2)) + 2D((v1, w1)) + 2D((v2, w2)) + 4D((v2, w1))
= D(v1)D(w2) + 2D(v1)D(w1) + 2D(v2)D(w2) + 4D(v2)D(w1)
= (D(v1) + 2D(v2))(D(w2) + 2D(w1)).

Now, if we assume that C((v1, w1)) < C((v1, w2)), we see that

C((v1, w1)) < C((v1, w2))
(D(v1) + 2D(v2))(D(w1) + 2D(w2)) < (D(v1) + 2D(v2))(D(w2) + 2D(w1))

D(w1) + 2D(w2) < D(w2) + 2D(w1),
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which contradicts our assumption that D(w1) ≤ D(w2). The other cases result in

similar contradictions. Thus πL(P2�P2, D1 ·D2) = πL(P2, D1)πL(P2, D2).

Case 2: In the case where neither D1 nor D2 is a cover distribution (assuming

that D(v1) = D(w1) = 0), we end up with a situation like

D((v2, w1)) = 0

D((v1, w1)) = 0

D((v2, w2))

D((v1, w2)) = 0

We claim that the pebbling number is D((v1, w1)) + 2D((v1, w2)) + 2((v2, w1)) +

4D((v2, w2)) = 4D((v2, w2)) (the other three terms are zero), and we will induct on

the size of the distribution. Begin with the base case that D((v2, w2)) = 1. Note that

an initial configuration C given by C((v1, w1)) = 3 and 0 otherwise is not solvable, as

a single move puts one pebble on ((v1, w2)) or ((v2, w1)), leaving no possible moves

with D not having been reached. Now consider four pebbles on the graph. If there

are 4 on (v1, w1) or 2 or more on (v1, w2) or (v2, w1), then we may reach D. If these

conditions are not true, then there are 2 or 3 pebbles on (v1, w1) and 1 pebble on

(v2, w1) or (v1, w2) (or both). Make one pebbling move from (v1, w1) to an adjacent

vertex with a pebble on it, then make a move from that vertex to (v2, w2). Thus we

reach D.

Now assume that for some k ≥ 1, we may begin with a configuration of 4k pebbles

on the graph and move k pebbles to (v2, w2). Now consider the case for k + 1. First

note that placing 4k+3 pebbles on (v1, w1) results in an unsolvable configuration, since

we can use 4k pebbles to move k pebbles to (v2, w2) as per the inductive hypothesis,

but the remaining three are not sufficient to move another pebble to (v2, w2). Now

we place 4k + 4 pebbles on the graph. The inductive hypothesis allows us to use 4k
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pebbles to move k pebbles to (v2, w2), and by our base case, we may use the remaining

four to place one more pebble on (v2, w2). Thus we have reached D.

Case 3: For the final case, assume that D1 is not a cover distribution, but D2 is.

Additionally, assume that D(v1) = 0 and D2(w2) ≥ D2(w1). Now our arrangement

looks like

D((v2, w1))

D((v1, w1)) = 0

D((v2, w2))

D((v1, w2)) = 0

We will perform two separate inductions to handle this final case. In the first, we

will assume that D((v2, w1)) = D((v2, w2)) = k and induct on k. For the second, we

assume D((v2, w1)) = m ≤ D((v2, w2)) = k and induct on k.

Case 3a: First assume that D((v2, w1)) = D((v2, w2)). Now consider a base

case for the first induction. Then D((v2, w1)) = D((v2, w2)) = 1. We claim that the

pebbling number for this graph and distribution is 6. Placing 5 pebbles on (v1, w1) is

an unsolvable configuration, since using 4 pebbles to move one to (v2, w2) or 2 pebbles

to (v2, w1) leaves too few to move a pebble to the other vertex.

Now we look at some configuration of six pebbles on the graph. If we begin with

one or two pebbles on either (v2, w1) or (v2, w2), then by the previous case, we may

use four of the remaining pebbles to put one on the other vertex, reaching D. If three

or more pebbles begin on either (v2, w1) or (v2, w2), then a single move to the other

vertex allows us to reach D.

Now we assume that the six pebbles are arranged between (v1, w1) and (v1, w2).

If each vertex has two or more pebbles on it, then the moves [(v1, w1), (v2, w1)] and

[(v1, w2), (v2, w2)] allow us to reach D. If (v1, w1) (the case for (v1, w2) will be similar)
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only has one pebble, then move one pebble from (v1, w2) to it, and then the moves

[(v1, w1), (v2, w1)] and [(v1, w2), (v2, w2)] will allow us to reach D. If C(v1, w1) = 0 (as

before, the case for (v1, w2) is similar), then we may use four pebbles to move one to

(v2, w1) and two pebbles to move one to (v2, w2). Thus we have reached D.

Now assume the result holds for D((v2, w1)) = D((v2, w2)) = k and 6k pebbles.

Now we look at the k + 1 case with 6k + 6 pebbles. First note that a configuration

on (v1, w1) defined by C((v1, w1)) = 6k + 5 is unsolvable. We could use 6k pebbles

to move k pebbles to (v2, w1) and (v2, w2). The remaining 5 will not be sufficient to

move a pebble to each of those vertices. Now we look at 6k+ 6 pebbles on the graph.

By the inductive hypothesis, we may use 6k pebbles to move k pebbles to (v2, w1)

and (v2, w2). By the base case, the remaining 6 pebbles may be used to move one

more pebble to each of (v2, w1) and (v2, w2), and so we reach D.

Case 3b: Now we induct on D((v2, w2)) = k. We begin by fixing D((v2, w1)) = m.

In the base case where k = m, then Case 3a yields πL(P2�P2, D1 ·D2) = 2m+ 4k.

Now consider the case D((v2, w2)) = k + 1. Note that a simple configuration on

(v1, w1) of 2m+ 4k+ 3 pebbles is unsolvable, as we may use 2m+ 4k pebbles to move

m pebbles to (v2, w1) and k pebbles to (v2, w2). However, the remaining three pebbles

are insufficient to move another pebble to (v2, w2). Now consider some configuration

of 2m+ 4(k + 1) = 2m+ 4k + 4 pebbles on the graph. By the inductive hypothesis,

we may move m pebbles to (v2, w1) and k pebbles to (v2, w2). Furthermore, by the

base case for Case 1, we may use the remaining four pebbles to move one additional

pebble to (v2, w2).

In any situation, then, we see that the result holds as desired.
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Chapter 5: Conjectures and Future Directions

Our goal is to establish some conjectures on the various types of pebble distribu-

tions on path graphs. Utilizing the Cover Pebbling Theorem, we begin with an initial

conjecture on paths with cover distributions.

Conjecture 5.1. For Pn and a distribution D of pebbles, if D is a cover, then

πL(Pn) = max

{
D1(v1) + 2D1(v2) + · · ·+ 2n−1D1(vn),
D1(vn) + 2D1(vn−1) + · · ·+ 2n−1D1(v1)

}
.

Our motivation for this is to extend Sjöstrand’s result to some non-cover distri-

butions with the next conjecture (an extension to Conjecture 5.1), so we remain in

the simple case of a path, and then we will examine other distributions to which his

result will not extend.

5.1 Extending the Cover Pebbling Theorem

First consider a graph G and a cover distribution D. By adding a set of vertices

{vi} with D(vi) = 0 and edges to the graph, we can create a graph with a largest

unsolvable configuration that is not a simple configuration. Consider the following

example of adding a vertex to C4 (where the numbers represent the distribution on

each vertex):

1 4

52

1 4

52

0
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Note that on the original graph, our greatest unsolvable configuration is obtained

by placing 32 pebbles on the bottom-left vertex. Since the distribution is a cover, we

need only consider simple configurations. Then for the bottom-left vertex, we require

1 · 1 + 2 · (4 + 2) + 4 · 5 = 33. In clockwise order, simple configurations on the other

vertices require 30, 21, and 24 pebbles, respectively. However, by adding the fifth

vertex, we can place on pebble on it, creating a non-simple configuration with 33

pebbles that is unsolvable. Note that this gives us a greatest unsolvable configuration

that is not simple, as a simple configuration on the new vertex only needs to have 30

pebbles on it to be solvable.

So we see that it does not generalize immediately, but we seek to place conditions

on distributions so that the result does generalize to some degree.

Now consider some distribution D on a path of length n. We will separate the

various distributions into three general types – a distribution will have zero pebbles on

neither, one, or both end vertices. We make conjectures about the labeled pebbling

numbers on paths with specific types of distributions. The accompanying discussions

aren’t intended as proofs, but rather as intuitive motivations for the reasoning behind

the conjectures. During the discussions, we will take a constructive approach, building

the largest unsolvable configuration possible on the given graphs and distributions.

From there, we will argue that placing one more pebble anywhere on the graph will

render the configuration solvable.

Conjecture 5.2. For a path Pn with V (Pn) = {v1, . . . , vn} and a distribution D of

pebbles such that D(v1), D(vn) 6= 0, then

πL(Pn, D) = max

{
D(v1) + 2D(v2) + · · ·+ 2n−1D(vn),
D(vn) + 2D(vn−1) + · · ·+ 2n−1D(v1)

}
.

D(v1) D(v2) D(vn−1) D(vn)
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Our conjecture is that this type of distribution will behave like a cover distribution,

even if it isn’t one, at least for the purposes of calculating pebbling numbers. We will

begin construction by considering simple configurations on the end vertices v1 and

vn (taking a cue from the original pebbling number calculations for paths), as they

have been the vertices for simple configurations requiring the most pebbles to reach

D. For such a configuration on v1, we would require D(v1)+2D(v2)+ · · ·+2n−1D(vn)

pebbles to reach D, and one fewer pebble renders the configuration unsolvable.

Changing the configuration by moving a pebble to another vertex vi from the initial

simple configuration will reduce the number of pebbles necessary to reach D. Since we

must move at least one pebble to vn, then we have effectively moved a pebble closer

“for free,” retaining the 2dist(v1,vi)−1 pebbles that would have been discarded moving it

there. Additionally, as the the configuration is weighted towards vn (the more pebbles

we move towards vn in the initial configuration), then we should require fewer pebbles,

since, assuming that a solvable simple configuration on v1 is of greater size than one

on vn, D(v1) + 2D(v2) + · · · + 2n−1D(vn) > D(vn) + 2D(vn−1) + · · · + 2n−1D(v1)

(symmetric distributions notwithstanding).

We view this particular conjecture as a partial extension of the Cover Pebbling

Theorem. However, while the above discussion should provide some level of intuition

for the result, there are subtleties that arise that cause this extension to be nontrivial.

The idea for a how a proof might proceed is to structure an argument very similar to

that in the original theorem, making some allowances for fat vertices with one pebble

and perfect vertices with none. The crux of the conclusion of this proof relies on

resolving the effect of fat vertices with only one pebble.
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5.2 Conjectures on Other Distributions

Conjecture 5.3. For a path Pn with V (Pn) = {v1, . . . , vn} and a distribution D of

pebbles such that D(vi) = 0 for i ∈ {1, . . . , `} and D(v`+1), D(vn) 6= 0, then

πL(Pn, D) = max

{
2`D(v`+1) + · · ·+ 2n−1D(vn),
D(vn) + · · ·+ 2n−(`+1)D(v`+1) + 2` − 1

}
.

0 0 D(v`+1) D(vn)

With this type of distribution, our process begins similarly to the previous type.

We begin by examining the required number of pebbles to reach D via simple config-

urations on v1 or vn (assuming for simplicity that vn is the end vertex with a nonzero

distribution). For a simple configuration on v1, we would require 2`D(v`+1) + · · · +

2n−1D(vn) pebbles to reach D. As before, one fewer is unsolvable, and moving a

pebble in the initial configuration to any other vertex yields unnecessary pebbles and

a smaller necessary starting configuration as per the previous type of distribution.

Alternatively, we consider a simple configuration on vn. For such a configuration,

we require D(vn) + · · ·+ 2n−(`+1)D(v`+1) pebbles to reach D. By removing a pebble,

we create an unsolvable configuration. At this point our construction changes; this

configuration is unsolvable, but it is not maximal. As such, we now we seek to add

more pebbles to the configuration to make it maximal while leaving it unsolvable.

Consider vertex v1. To get a pebble from v1 to v`+1, we would require 2` pebbles.

Then if we put 2`−1 pebbles on v1 in our previous unsolvable configuration, it remains

unsolvable, and adding a pebble to any vertex in the initial configuration renders it

solvable.

We will consider a simple specific example for illustration.
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Lemma 5.1. For a path P2n with V (P2n) = {v1, . . . , v2n} and

D(vi) =

{
0 if i ∈ {1, . . . , n}
1 if i ∈ {n+ 1, . . . , 2n}

then πL(P2n, D) = 2n + 2n+1 + · · ·+ 22n−1.

Proof. Assume the given hypotheses. Note that by placing 2n + 2n+1 + · · ·+ 22n−1−1

pebbles on v1, then for any n, we cannot reach D. Now assume that there are

2n + 2n+1 + · · ·+ 22n−1 pebbles on P2n. We will first assume that no pebbles begin on

vi for i ∈ {n+ 1, . . . , 2n}.

We begin by examining v1. If there are zero pebbles or one pebble on v1, then

delete it. If there are more pebbles, then perform [v1, v2] for each two pebbles on

v1. Afterward, delete v1. Note that the number of pebbles remaining on P2n − {v1}

is at least 2n−1 + 2n + · · · + 22n−2 (since we “spend” at most half of the original

configuration during these moves). Repeat the process for v2, performing the move

[v2, v3] for each two pebbles on v2, and then delete v2. Similarly, we will be left with

at least 2n−2 + 2n−1 + · · ·+ 22n−3 pebbles on P2n − {v1, v2}.

Repeat this process until we have deleted vn. Now there must be at least 20 +

21 + · · · + 2n−1 pebbles on the graph P2n − {v1, v2, . . . , vn}. Recall that to move a

pebble from u to v, we require 2dist(u,v) pebbles. That is, the minimum number of

remaining pebbles on the graph is precisely enough to move one pebble to each vi for

i ∈ {n+ 1, . . . , 2n}.

Now we consider the case if some pebbles to begin on vi for i ∈ {n + 1, . . . , 2n}.

We repeat the above process until we are only left with the vertices vn+1, . . . , v2n. The

remaining distribution is a cover distribution, so we may invoke the Cover Pebbling

Theorem. By comparing the simple configurations, we can see that 1 + 2 + · · ·+ 2n−1

is the largest number of pebbles necessary to reach the distribution D, corresponding

to a simple configuration on vn+1 or v2n.
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Thus, in either case, we have πL(P2n, D) = 2n + 2n+1 + · · ·+ 22n−1.

Conjecture 5.4. Given a path Pn with V (Pn) = {v1, . . . , vn} and a distribution of

pebbles D such that D(vi) = 0 for i ∈ {1, . . . , `, r, . . . , n}, then

πL(Pn, D) = max

{
2`D(v`+1) + · · ·+ 2r−2D(vr−1) + 2n−(r−1) − 1,
2n−(r−1)D(vr−1) + · · ·+ 2n−(`+1)D(v`+1) + 2` − 1

}
.

0 0 D(v`+1) D(vr−1) 0 0

With this type of distribution, our process will be similar to the previous type.

To maximize the size of an unsolvable configuration, most of the pebbles will be

originally placed on either v1 or vn. For notational simplicity, we’ll take 2`D(v`+1) +

· · ·+2r−2D(vr−1)+2n−r−1 to be our maximum, so for a solvable simple configuration

on v1, we would require 2`D(v`+1) + · · · + 2r−2D(vr−1) pebbles. Removing one from

this configuration renders it unsolvable, and moving a pebble to a different starting

position – any vertex vi for i ∈ {2, . . . , r−1} – will leave us with extra pebbles leftover

after reaching D.

Starting with the unsolvable configuration, then, we seek to add more pebbles to

the starting configuration and it still be unsolvable. If we have C(vn) = 2r − 1, then

the configuration remains unsolvable. As per the previous case, adding a pebble to

any vertex will cause this to become a solvable configuration.

5.3 Conjectures on Path Products

Conjecture 5.5. For paths Pn and Pm with cover distributions of pebbles D1 and

D2, πL(Pn�Pm, D1 ·D2) = πL(Pn, D1)πL(Pm, D2).

Consider the following example for motivation:
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3

2

1

6

4

2

9

6

3

3

2

1

1 2 3

A quick calculation with aid from the Cover Pebbling Theorem shows that the

pebbling number of each path graph is 17. Our conjecture, then, is that the pebbling

number of their Cartesian product is 289. With the Cover Pebbling Theorem, we

need only consider simple configurations, and by calculating the required number of

pebbles from each vertex in the product, we can verify this result. Now we look at a

more general case of P3�P3.

cx

bx

ax

cy

by

ay

cz

bz

az

c

b

a

x y z

First note that the largest necessary configuration of pebbles for a cover dis-

tribution on P3 occurs on an end vertex – we will assume for simplicity that this

configuration begins on a and that a + 2b + 4c ≥ c + 2b + 4a =⇒ 3c ≥ 3a. If the

largest necessary configuration occurred on the middle vertex, then a + 2b + 4c <

2a+ b+ 2c =⇒ b+ 2c < a =⇒ 3b+ 6c < 3a, contradicting our initial assumption.

Similarly, we will also consider the maximum necessary configuration on the other

path as the one beginning on x.

Consider some initial simple configuration on P3�P3 above. We claim that the

largest necessary configuration begins on ax. We first note that ax + 2(ay + bx) +
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4(az+by+cx)+8(bz+cy)+16cz−1 pebbles on ax is an unsolvable configuration. Now

consider a simple configuration of ax+2(ay+ bx)+4(az+ by+ cx)+8(bz+ cy)+16cz

pebbles on ax, noting that this is precisely enough to reach the target distribution.

Consider some other initial configuration, say one on by, and assume the required

number of pebbles is greater than the previous one on ax. Then |C(by)| = by+2(ay+

bz+cy+bx)+4(ax+az+cz+cx) = 2a(2x+y+2z)+b(2x+y+2z)+2c(2x+y+2z) =

(2a+b+2c)(2x+y+2z) > (a+2b+4c)(x+2y+4z), contradicting our initial assumption.

Choosing starting configurations on other vertices results in similar contradictions.

Our more general conjecture is that this pattern holds on paths and path products

in general. That is, for two paths with cover distributions, the largest necessary

configuration to reach D1 · D2 on Pn�Pm begins on the vertex corresponding to

those on each individual path where the largest necessary configuration begins under

a similar line of reasoning as the P3�P3 case above (though clearly displaying the

contradictions with the inequalities is nontrivial in the general case). Additionally,

following from the conjectured extension of the Cover Pebbling Theorem on paths

with certain distributions, we further conjecture that products of such paths will

follow a similar pattern as well.

5.4 Further Directions

In addition to existing graph pebbling problems and conjectures, this new approach in

contrasting unlabeled and labeled graph pebbling opens up even more opportunities

for work.

Obviously, the earlier portion of this chapter contains a number of conjectures

dealing with paths and various distributions to be further explored and proved. The

first approach would likely be to consider the conjecture on Pn with a cover distri-

bution. Of particular interest beyond that is the extension of the Cover Pebbling
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Theorem to particular distributions on paths. Beyond that, questions arise about

extending it farther, exploring what restrictions must be made on graphs and distri-

butions so that it may be applied. It also may be worth contrasting the P2�P2 case

with the full C4 case, as there are distributions that need to be considered for C4 that

cannot occur on P2�P2.

Most of the work in this paper has been on paths and products thereof, but similar

results could be explored for other “nice” classes of graphs; in particular, cycle graphs

and complete graphs seem the next logical step up in complexity. There is a pebbling

number for trees in general, but working with a target distribution could prove expo-

nentially difficult with the compounded variability of tree-distribution combinations.

While we have established a few foundational results in contrasting labeled peb-

bling and unlabeled pebbling (bounds, effects of symmetry), most of our work has

focused on the labeled approach. As of yet, the effects of allowing for isomorphisms

of distributions been only minimally explored, and we have few specific results. This

is an obvious open area with as many questions, and as mentioned before, is defi-

nitely a more challenging question. Even returning to moving a single pebble to a

single vertex could make for some interesting questions (at least for non-cycle and

non-complete graphs). It is worth noting that although we’ve placed bounds on the

unlabeled pebbling number, finding a formula for it is another issue; furthermore,

the process for finding it may require a different approach than that of the labeled

pebbling number (consider an unlabeled Pn and a cover distribution, for example).

As it was, graph pebbling was rife with interesting conjectures and difficult open

questions. Extending from a root vertex to a distribution only increased the volume

of material to explore. Now, by establishing a distinction between unlabeled and

labeled pebbling, we have further bifurcated and vastly increased the possible avenues

of results.
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Appendix A: Labeled and Unlabeled Pebbling Numbers

for Selected Graphs and Distributions

Path Graphs

Graph and
distribution

Unlabeled
pebbling number

Labeled
pebbling number

0 1 1 π(G,D) = 3 πL(G,D) = 6

1 0 1 π(G,D) = 5 πL(G,D) = 5

1 1 1 π(G,D) = 7 πL(G,D) = 7

1 1 0 0 π(G,D) = 5 πL(G,D) = 12

1 0 1 0 π(G,D) = 5 πL(G,D) = 10

1 0 0 1 π(G,D) = 9 πL(G,D) = 9

0 1 1 0 π(G,D) = 7 πL(G,D) = 7

1 1 1 0 π(G,D) = 5 πL(G,D) = 14

1 1 0 1 π(G,D) = 11 πL(G,D) = 13

1 1 1 1 π(G,D) = 15 πL(G,D) = 15

2 1 0 π(G,D) = 5 πL(G,D) = 10

1 2 0 π(G,D) = 5 πL(G,D) = 8

2 2 0 π(G,D) = 7 πL(G,D) = 12

2 0 1 π(G,D) = 6 πL(G,D) = 9

2 0 2 π(G,D) = 10 πL(G,D) = 10

2 1 1 π(G,D) = 8 πL(G,D) = 11
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1 2 1 π(G,D) = 9 πL(G,D) = 9

2 1 2 π(G,D) = 12 πL(G,D) = 12

2 2 1 π(G,D) = 10 πL(G,D) = 13

2 2 2 π(G,D) = 14 πL(G,D) = 14

2 0 1 0 π(G,D) = 7 πL(G,D) = 18

1 0 2 0 π(G,D) = 9 πL(G,D) = 12

2 0 2 0 π(G,D) = 11 πL(G,D) = 20

2 0 0 1 π(G,D) = 10 πL(G,D) = 17

2 0 0 2 π(G,D) = 18 πL(G,D) = 18

0 2 1 0 π(G,D) = 9 πL(G,D) = 11

2 1 1 0 π(G,D) = 9 πL(G,D) = 22

1 2 1 0 π(G,D) = 10 πL(G,D) = 18

1 1 2 0 π(G,D) = 12 πL(G,D) = 16

2 2 1 0 π(G,D) = 11 πL(G,D) = 26

2 1 2 0 π(G,D) = 13 πL(G,D) = 24

1 2 2 0 π(G,D) = 14 πL(G,D) = 20

2 2 2 0 π(G,D) = 15 πL(G,D) = 28

2 1 1 1 π(G,D) = 16 πL(G,D) = 23

1 2 1 1 π(G,D) = 17 πL(G,D) = 19

2 2 1 1 π(G,D) = 18 πL(G,D) = 27

2 1 2 1 π(G,D) = 20 πL(G,D) = 25

2 2 2 1 π(G,D) = 22 πL(G,D) = 29

2 2 1 2 π(G,D) = 26 πL(G,D) = 28
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Cycle Graphs

Graph and
distribution

Unlabeled
pebbling number

Labeled
pebbling number

1

10

π(G,D) = 3 πL(G,D) = 4

1

11

π(G,D) = 5 πL(G,D) = 5

1 0

10

π(G,D) = 4 πL(G,D) = 5

1 1

10

π(G,D) = 5 πL(G,D) = 8

1 1

11

π(G,D) = 9 πL(G,D) = 9

1

0

00

1
π(G,D) = 3 πL(G,D) = 8
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1

0

01

0
π(G,D) = 4 πL(G,D) = 7

1

0

10

1
π(G,D) = 7 πL(G,D) = 9

1

0

11

1
π(G,D) = 9 πL(G,D) = 12

1 0

0

10

0 π(G,D) = 6 πL(G,D) = 9

0 1

1

01

0 π(G,D) = 7 πL(G,D) = 14

1 1

1

10

0 π(G,D) = 8 πL(G,D) = 18

1 1

0

11

0 π(G,D) = 12 πL(G,D) = 15
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Complete Graphs

Graph and
distribution

Unlabeled
pebbling number

Labeled
pebbling number

1 0

00

π(G,D) = 1 πL(G,D) = 4

1 1

00

π(G,D) = 3 πL(G,D) = 5

1 1

10

π(G,D) = 5 πL(G,D) = 6

1 1

11

π(G,D) = 7 πL(G,D) = 7

1

0

00

0
π(G,D) = 1 πL(G,D) = 5

1

1

00

0
π(G,D) = 3 πL(G,D) = 6
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1

1

10

0
π(G,D) = 5 πL(G,D) = 7

1

1

11

0
π(G,D) = 7 πL(G,D) = 8

1

1

11

1
π(G,D) = 9 πL(G,D) = 9
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