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Abstract

Statisticians, biologists and ecologists extensively use occupancy models on binary
data to determine the probability of the true presence or absence of a species at a
site in order to study the species distributions. A major issue of the monitoring pro-
gram is that the detection process is imperfect so that it will inevitably miss some
presences. In the past decade, many studies have accounted for imperfect detec-
tion corresponding to environmental factors in their estimations. In this paper, we
construct a new model which considers time dependence in the detection process by
taking the impact of a previous miss into account. We apply our method to data
from the Snapshot Serengeti project, a camera trap study in Serengeti National Park,
Tanzania, Africa. In our application, three occupancy models (model with time de-
pendence, model without time dependence, and model without time dependence but
has distinct intercepts for different sites) are compared by evaluating the Watan-
abe–Akaike information criterion (WAIC). We also implement a simulation study of
our models. Our results show that our proposed model that accounts for temporal
auto-correlation results in improved estimation of occupancy effects.

viii



Chapter 1: Introduction

1.1 Occupancy

Occupancy models are commonly used in statistical ecology to estimate species’

distribution and abundance over space and time [19], identify drivers of occupancy

[13], and to study how species and the environment or other species are related.

These models use systematically collected data about species presence or absence at

some sites during a period of time (for example, a year) to draw inference on species

distribution. Royle et al. (2005) used occupancy models to study relationships be-

tween species abundance and occupancy and provided an application of these models

accounting for imperfect detection to geographically extensive breeding bird survey

data [30].

Similar models are used to study species habitat affinities in order to make sug-

gestions to habitat conservation plans. For instance, such models are used to evaluate

occupancy rates of the Palm Springs ground squirrel. Ball, Doherty and McDonald

(2005) [3] have found that ground squirrels were more likely to occupy mesquite, which

has largely reduced over last 50 years due to human behaviours (urban development),

than creosote or other vegetation types, thus they suggested that we should focus on

protecting the mesquite hummock/dune system.

Govindan, Kéry and Swihart (2012) used dynamic occupancy models to study

variation in patch (tree-level) occupancy dynamics of three species of weevils with

different specialization in the eastern United States. 2467 weevils were collected

during the four years of sampling, and their result indicates that for C. pardalis (white

oak specialist), 80.1% of all captures occurred on white oak and 19.9% on red oak,

for the other two species C. sulcatulus (generalist) and C. proboscideus (generalist),
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the two percentages are much closer to each other ( 40.5%/59.5% and 33.9%/66.6%).

In addition, they found that more mast availability will increase survival probability

of C. pardalis at occupied trees, especially on white oaks.

Two goals of using occupancy models are to estimate the probability of presence

and the probability of detection of a species. There is a sampling problem that it is

challenging to detect all species that are actually present. Species can be undetected

for multiple reasons such as lack of visibility during the survey period, and observers

(In this research we use cameras) failing to activate. Benoit et al. (2018) [5] has shown

that imperfect detection can lead to large changes in estimates of species richness at

the site level. Occupancy models account for this imperfect detection in the binary

outcome [28] by incorporating a latent process model for true presence/absence and

an observed model for detection given presence [20][11].

If imperfect detection does not exist, that is, the probability that a species is

observed given it is present is one, then it is reliable to use data from only one sur-

vey(observation) per season (time period under study) to fit the model, but with

imperfect detection, a single survey will lead to underestimation of species presence

rate [5]. It was previously believed that replicated independent surveys per season

were needed to eliminate the bias and estimate both occupancy and detection param-

eters [37][20][21]. However, there are some problems with these methods that need

replicate surveys. For example, data from multiple surveys per season are not always

available because it costs a lot of money, time, and energy. In addition, these mod-

els are based on the assumption that the occupancy status of a site stays unchanged

across surveys, and surveys are independent from each other. These assumptions may

not always be reasonable. For example, migratory species do not stay in one location

for long, so it would be inappropriate to assume the occupancy status remains un-

changed over long periods of time. Thus, there is a need for single-survey per season
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implementations of these methods.

Some research has been done to develop methods using single-survey data that

can still ensure reliable estimation. Lele et al. (2012) [18] developed an occupancy

model for estimating both occupancy and detection probabilities using single-survey

data and concluded from simulations for two cases: using distinct covariates and

using a categorical common covariate for both occupancy and detection that as the

sample size increases, the estimates converge to the true value. Especially for the first

case, a sample sizes of 300 or larger is needed to get a good estimation of regression

coefficients. Recently, Hepler et al. (2018) [13] have defined a new spatio-temporal

occupancy model that considers occupancy status from prior time periods and neigh-

boring sites when estimating parameters. In their simulation study, they compared

estimation results from K = 1; 3; 5 independent surveys per season, and have shown

that this spatio-temporal model can produce reliable estimation for the single survey

per season case. Also, the reduction in bias in the posterior mean of parameters by

fitting to multiple survey data goes to zero when the number of seasons is sufficiently

large. Thus, the authors found that by incorporating both spatial and temporal de-

pendence in occupancy, you could borrow enough strength to accurately estimate

both occupancy and detection parameters even without multiple surveys.

The goal of this research is to extend the models used in [13] to also include time

dependence in the detection model, which to the best of our knowledge has never been

considered in any existing publication. We believe that by accounting for residual

auto-correlation in detection, we can further improve inference. Practically speaking,

we would expect temporal auto-correlation to exist in detection. If a camera at a

given location misses in a given season, it is reasonable that this camera is more likely

to also miss in a later season. This research, motivated by the Snapshot Serengeti

project, develops a new occupancy model that accounts for temporal dependence in
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the detection process.

1.2 Data Collection

The spatial and temporal data we study were collected by the Snapshot Serengeti

project. We have 225 cameras deployed in a 1125km2 grid in Serengeti National Park

(SNP), Tanzania. Each 5km2 grid cell has one camera at the center. These cameras

were set about 50 cm above the ground, the batteries and SD cards were changed,

and the areas in front of cameras were cleaned (cut tall brush) regularly in order to

provide an unobstructed view. Normally, if things go well, each camera can last about

two months after maintenance. This camera trapping survey is part of the long-term

Serengeti Lion Project which started in 1960’s. The Serengeti Lion Project aims to

monitor the health of Africa’s most important wildlife, and they have field teams that

keep track of about 330 lions in 24 prides in the Serengeti and 50–60 lions in 5 prides

on the floor of Ngorongoro Crater [35].

The camera trap survey has operated continuously since 2011 and produced ap-

proximately 1.2 million image sets by May 2013 [2] [35]. In cooperation with Zooni-

verse (https://www.zooniverse.org/), the world’s largest and most popular platform

for people-powered research, more than 400,000 photographic images has been classi-

fied by about 10,000 registered volunteers from the general public on the citizen science

website, Snapshot Serengeti (www.snapshotserengeti.org). There is an algorithm that

sends each set of images to more that one person due to potential misclassification

of volunteers, and this algorithm has been tested to have 96:6% accuracy for species’

presence/absence. The images have recorded over 30 species distributed across the

landscape. These cameras are triggered by movement or heat. Note that fires and

vegetation may also accidentally trigger the camera. Of the 1.2 million image sets,

only 322,653 of them actually contained animals [35]. The cameras are set to take

4



1-3 photos per trigger (3 photos in the daytime and 1 photo for incandescent-flash

cameras at night due to flash limitations). After classification by volunteers, we ob-

tain binary data 1 (presence) or 0 (absence) with date and site ID. In this thesis we

consider observations in 2011 and divide them into disjoint 8-days seasons, and we

only care about whether or not the species was detected at any point during each

8-day time period. As previously mentioned, our data set contains binary data in-

dicating presence (marked as 1) or absence (marked as 0) of many species include

Thomson’s gazelle, buffalo, wildebeest, zebra, topi, etc. and the corresponding site

IDs and dates. In this research we will develop a model and implement it on this

application to study the relationship between environmental covariates and species

occupancy.

Environmental information was collected such as Normalized Difference Vegeta-

tion Index (NDVI) and the distances from sites to the nearest river, etc. In our

models, some these environmental covariates are selected as predictor variables. For

our occupancy model, based on the work of [2] and [13], we use NDVI and NDVI2.

The Normalized Difference Vegetation Index (NDVI), a measure of vegetation green-

ness, was collected from NASA’s Moderate Resolution Imaging Spectroradiometer

(MODIS) operating on the Terra satellite platform. It has been shown that NDVI

has a positive effect on species richness [23]. To consider the density of trees, we

collect the amount of trees over 2m in height within 50m around the cameras, and

we classified them into four categories: none (0), sparse (1–10), moderate (11–30),

and dense (greater than 30) [2]. Other predictors we use are if there was a rain and

distance to nearest permanent river which was extracted from a GIS layer for the

region. We consider existence of termite mounds as a predictor for topi, a fast type

of antelope, because they often use termite mounds as vantage points to get a good

look at their surroundings [8]. For the detection model, we consider two predictors:
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the number of days camera was on during the season (from 1 to 8) and whether or

not the camera was in a forest region (more than 10 trees over 2m in height within

50m).

1.3 Overview of Research

Accounting for spatial and temporal dependence in the true occupancy process

has been well studied [13]. It makes intuitive sense that residual temporal auto-

correlation in detection would also exist. For instance, if a camera is half covered

by plants, or some animal accidentally change the direction it faces, it may not be

able to detect all the individuals in the site, and this may cause false absence (missed

detection) that will last more than one season before it is maintained. Therefore, the

overall goal of this thesis is to account for time dependence in the detection process

to study animal distributions in Serengeti National Park in 2011.

Chapter 2 will consist of the necessary background information about Bayesian

statistics, MCMC algorithms, and an introduction to occupancy models. In Chapter

3 we first introduce our model considering time and spatial dependence in occupancy

and time dependence in detection. We perform a simulation study to compare the

estimation result of our model and the model does not account for residual auto-

correlation in detection. In Chapter 4, we apply the two models and another modi-

fied model which considers distinct intercepts but not time dependence in detection

to real data in 2011. We implement our model on our Serengeti National Park ap-

plication for Thomson’s gazelle, lion, zebra, wildebeest, and topi and discuss how the

presence/absence of each is related to the environmental variables. In Chapter 5 we

summarize our finding and talk about the future extension.
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Chapter 2: Background Information

2.1 Bayesian Methods

Occupancy models are often conducted under the Bayesian framework. In this

section we will introduce some basic knowledge of Bayesian statistics. We will present

the material only in terms of continuous random variables, but definitions and results

similarly hold in the discrete case.

Suppose y1;y2; � � � ;yn are n observations from a distribution with density p(yj�),

where the parameter � can be either a value or a set of parameters: � = (�1; � � � ; �m)

(we will write any vector or matrix in bold). As statisticians, our goal is to estimate

� using all available data. Unlike frequentist statisticians who regard parameters as

a set of unknown constants, Bayesians believe that the parameters are also random

variables and have their own distributions. Therefore, the Bayesian approach of esti-

mating parameters aims to determine the distributions of parameters conditional on

the observed data (called the posterior distribution). The basis of Bayesian statistics

is Bayes’ Theorem:

Theorem 2.1. Bayes’ Theorem [4]: Suppose the joint distribution of random vari-

ables X and Y is g(x; y), then

g(yjX = x) =
g(xjY = y)g(y)

g(x)
; (2.1)

where

g(y) =

Z 1

�1
g(x; y)dx;

g(x) =

Z 1

�1
g(x; y)dy:

(2.2)
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Based on Bayes’ theorem, we can update the parameters’ distribution by condi-

tioning on the observed data starting from our previous belief and knowledge regard-

ing the parameter. First, we define the likelihood or sampling distribution to be the

density of y dependent on unknown parameters �, p(yj�). Second, we summarize

our previous understanding of � then set an initial distribution of parameters: �(�).

Note that this distribution is not conditional on any data, it is completely formed

according to our knowledge about �, and we call �(�) the prior distribution. Then,

by the likelihood and prior distribution we can compute the marginal distribution of

y:

m(y) =

Z
�

p(yj�)�(�)d�; (2.3)

where m(y) denotes the marginal distribution and � is the support of � (A set

contains all the possible values � can take).

By applying Bayes’ theorem, we have

ppost(�jy) =
p(yj�)�(�)

m(y)
: (2.4)

Where ppost(�jy) is defined to be the posterior distribution of �. The equation above

can be regarded as an updating process where observed data y is used to update the

distribution of parameters from prior �(�) to posterior ppost(�jy). Note that this new

distribution of � is now conditional on data y. In other words, we let the posterior

distribution to obtain information from new observed data. After getting the first

posterior, we can regard it as the new prior and apply 2.4 again with the second data

point y0 to get another new and more reliable posterior distribution ppost(�jy;y0).

To summarize the updating process, suppose we have n data points y1; � � � ;yn as

before and a prior �(�), we can determine the final posterior distribution by repeatedly

applying equations 2.3 and 2.4:
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�(�)! ppost(�jy1)! ppost(�jy1;y2)! � � � ! ppost(�jy1; � � � ;yn):

Bayesian inference is entirely based on the posterior distribution, and ppost(�jy1; � � � ;yn)

provides us the most likely value of � given the data set y1; � � � ;yn. In this thesis,

we use the posterior mean as our parameters estimation.

However, usually we can not write down a closed form of posterior distributions

due the complexity of models. More specifically, it is typically the case that there is

no closed form solution for m(y). Instead, the posterior distribution must be studied

numerically. In the next section, we will introduce the methods we use to perform

parameters estimation without knowing the posterior distribution in full.

2.2 Markov chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a method which allows us to generate

samples approximately from a distribution that may not have a closed analytical

form. We will first state definitions and relative theorems of Markov chains, then

introduce two different MCMC algorithms. A Markov chain is defined as following

[26]:

De�nition 1. Let fX tg = (X0; X1; X2; � � � ) be a sequence of dependent random

variables. We call fX tg a Markov chain if the distribution of X t only depends on

X t�1:

[X tjX0; X1; � � � ; X t�1] = [X tjX t�1]:

For a discrete Markov chain (Markov chains can also be continuous), let S =

fs1; s2; � � � ; sng which contains n states to denote its state space. For each step the

chain can move from one state to another, and we have the following definitions and

properties.
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De�nition 2. [9] A Markov chain fX tg is said to be irreducible if it can get from

any state si to any state sj (8i; j 2 f1; 2; � � � ; ng). In other words, for any si; sj 2 S,

there exists an integer nij such that

Prob(Xnij
= sjjX0 = si) > 0:

De�nition 3. We say k is the period of si if

k = gcdfn > 0 : Prob(Xn = sijX0 = si)g;

where gcd means the greatest common divisor. si is said to be aperiodic if k=1, and

we say a Markov chain is aperiodic if all its states are aperiodic.

De�nition 4. � os said to be a stationary distribution of a Markov chain if

�(sj) =
X
si 2S

Pij�(si)

for all sj 2 S, where Pij is the probability the Markov chain getting from si to sj in

1 step.

Theorem 2.2. [32] If a Markov chain is both irreducible and aperiodic, it has unique

stationary distribution.

If we can run an irreducible and aperiodic Markov chain infinite many times (which

we actually can not), we will get samples exactly from the stationary distribution.

MCMC algorithms are Markov chains that are constructed so that the stationary

distribution is the posterior distribution. By implementing an MCMC algorithm for

a large number of iterations, we can get samples whose distribution are approximately

the stationary distribution. There are many MCMC algorithms, and most of them

are built on the Metropolis-Hasting algorithm or Gibbs sampling algorithm.
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2.2.1 Metropolis-Hastings Algorithm

Recall that we want samples from the posterior distribution ppost(�jy), and we

call it the target density. Let q(�′j�) be the proposal density, which is a conditional

density function of �0 given �. Normal and uniform distributions are commonly used

for proposal densities. The steps of Metropolis-Hastings algorithm are as following

[25]:

Algorithm 1: Metropolis-Hastings Algorithm

1. Set the initial value to be �0,
2. For step k we generate a new �0 from proposal density given �k�1:
q(�j�k�1),

3. Compute the acceptance probability:

r = minf1; ppost(�
′jy)

ppost(�k−1jy)

q(�k�1j�0)
q(�0j�k�1)

g;

4. Choose �k to be �0 with probability r of stay at �k with probability 1� r.

Note that we can not directly compute the posterior distribution because the

marginal density m(y) is unknown. However, since we only need to compute the

posterior through the ratio, we can apply equation 2.4 to have:

ppost(�
′jy)

ppost(�k−1jy)
=

p(yj�′)�(�′)

p(yj�k−1)�(�k−1)
:

The Metropolis-Hastings algorithm simulates an irreducible and aperiodic Markov

chain �0;�1;�2; � � � , and according to theorem 2.2 [32] it will converge to our tar-

get density ppost(�jy) (the posterior distribution we want draws from). In theory,

Metropolis-Hastings algorithm can be applied to any posterior. However, this algo-

rithm is actually very inefficient in multivariate distributions, that is, if parameter �

is a vector with more than 2 dimensions because for each step, the algorithm update

the whole vector, which make it hard to accept new draws (the ideal acceptance rate

for a one-dimensional Gaussian distribution is about 50% [27]). To fix this problem,
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Gibbs sampling is often used for vector parameters.

2.2.2 Gibbs Sampling Algorithm

Gibbs sampling algorithm (or called Gibbs sampler) was introduced after Metropolis-

Hastings to obtain draws from posterior distributions when parameters are vectors.

This algorithm samples from so called the full conditional density instead of proposal

density.

De�nition 5. Suppose � = (�1; �2; � � � ; �m) is an m dimensional random variable

whose joint density is h(�1; �2; � � � ; �m). Then the full conditional density of �i

for some i is:

hi(�ij��i) =
h(�)

h(��i)
;

where

��i = f�j : j 6= ig

and

h(��i) =

Z 1

�1
h(�1; �2; � � � ; �m)d�i:

The full conditional distribution allows us to simulate �i depending on all the

other elements in � for some i. For each step, we update one element (�i) for some i,

then update the next one conditional on all the other elements in � (including �i).The

steps of Gibbs sampling algorithm are as following [25]:

Algorithm 2: Gibbs Sampling Algorithm

1. Set the initial value to be �0 = (�0
1; �

0
2; � � � ; �0

m),
2.For kth update at jth step, we simulate �jk from the full conditional density
of hk:

�jk � hk(�kj�j1; �j2; � � � ; �jk�1; �
j�1
k+1; � � � ; �j�1

m )
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To sum up, we use Gibbs sampler to simulate and update all the elements of �

one by one using conditional density given other elements. Whenever all elements

has been updated, we let the new vector be the next state of the Markov chain. We

will use this algorithm for simulation in Chapter 3 by running Gibbs sampler 10,000

iterations then get simulated data that approximately from our target distribution.

2.2.3 Metropolis within Gibbs

The combination of Metropolis Hastings and Gibbs Sampling is another MC-MC

method that researchers use when they do not recognize the full conditional densities

for some (not necessarily all) of the parameters. Suppose hi(�ij��i) is not any known

distribution that we can generate draws from, then for any step j we can use a

Metropolis-Hastings update for �i instead:

Algorithm 3: Metropolis within Gibbs Algorithm

1. Simulate �0i � q(�ij�j�1
i );

2. Compute

r = minf1; hi(�
0
ij�j1; �j2; � � � ; �ji�1; �

j�1
i+1 ; � � � ; �j�1

m )

hi(�
j
i j�j1; �j2; � � � ; �ji�1; �

j�1
i+1 ; � � � ; �j�1

m )

q(�i�1
i j�0i)

q(�0ij�i�1
i )
g;

3. Accept �0i and update �ji with probability r or stay at the same value with
�j�1
i otherwise.

Note that even if we do not recognize the full conditional density hi, we can still

evaluate this function at some specific point to compute r. In addition, for those

parameters we do recognize the full conditional densities of, we use Gibbs update.

2.3 WAIC

In Chapter 4, we will apply several models to real data and compare the results.

To evaluate the goodness of fit or predictive model accuracy, out-of-sample predic-

tion error is used. Stone (1977) develop cross-validation to estimate out-of-sample
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prediction error [34]. Vehtari and Lampinen (2002) [38] use cross-validation from a

Bayesian perspective. There are also some alternative measures: AIC [1], DIC [33],

and WAIC [39]. In this thesis we consider computing Watanabe-Akaike information

criterion (WAIC) which was first introduced by Watanabe (2010) [39] because it is

more suitable for Bayesian models than AIC and DIC.

We expect a good model to have relatively small WAIC. Suppose we have n data

points (y1; � � � ; yn) observed from the unknown true model f . Recall p(yj�) is the

likelihood function we use to estimate � which represents the unknown parameter.

Note that the method introduced in this section is also applicable for multivariate

case (when � is a vector). Following the computational steps summarised by Gelman

(2014) [10], the out-of-sample predictive fit for a new data point yi given observed

sample y = (y1; � � � ; yn) is:

log ppost(yijy) � log Epost(p(yij�)) = log

Z
p(yij�)ppost(�jy)d(�); (2.5)

where ppost(�jy) is the posterior density of the parameter �, and Epost(p(yij�)) means

the expectation of p(yij�) over the posterior distribution. Then, the expected out-of-

sample log predictive density (elpd) of this data point, which is the expectation of

the equation above over f , is:

elpd = Ef (log ppost(yijy)) =

Z
(log ppost(yijy))f(yi)dy: (2.6)

Consequently, the expected log point-wise predictive density (elppd) for the whole

new dataset y = (y1; � � � ; yn) is a sum of elpds:

elppd =
nX
i=1

Ef (log ppost(yijy)); (2.7)

However, we cannot directly compute elppd due to the uncertainty of function f .

Instead, we estimate this quantity with ˆelppd by computing log pointwise predictive
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density (lppd) first and then adding a correction for the effective number of parameters

to adjust for overfitting. The lppd is computed by

lppd = log
nY
i=1

ppost(yijy) =
nX
i=1

log

Z
p(yij�)ppost(�jy)d�: (2.8)

Note that we do not have the posterior density for �. In any application, we can only

observe a sequence of random variables generated from a Markov chain, (�1; �2; � � � ; �m),

where m is the number of draws we get from posterior distribution. In Bayesian model

application the number of iterations are often very large to get close estimation, but

we can choose the last m draws (in this thesis we do 150,000 iterations and choose m

to be 5000). Then we can approximate lppd by

computed lppd =
nX
i=1

log(
1

m

mX
k=1

p(yij�k)): (2.9)

Here we need m to be large enough to fully capture the posterior distribution so that

the equation above holds. One approach of bias correction talked by Gelman (2014)

[10] is

p = 2
nX
i=1

(log(Epostp(yij�))� Epost(log p(yij�))): (2.10)

Again, we compute the expectations using (�1; �2; � � � ; �m):

computed p = 2
nX
i=1

(log(
1

m

mX
k=1

p(yij�k))�
1

m

mX
k=1

log p(yij�k)): (2.11)

Then we will have our estimated elppd by

ˆelppd = lppd� p; (2.12)

Finally, WAIC is defined to be [10]:

WAIC = �2 � ˆelppd: (2.13)
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In Chapter 4, the application part, we will compare the computed WAIC for three

models: our new model which account for time dependence in detection and two

other models which do not. Due to the difference of complicity of models, WAIC

may varies, and more complex models tend to have larger WAIC. We will show that

even if our model is much more complicated (more parameters), we still get a similar

WAIC with other two models.

2.4 Occupancy Models

Occupancy models are used to model binary observations that are imperfectly

detected. These models are commonly used in ecology to quantify the true presence

or absence of species across a given geographical region. We assume the true state of

occurrence follows a Bernoulli distribution with probability  i;t indexed by space and

time. That is, let Zit indicate the true presence (Zit = 1) or absence (Zit = 0) of a

species at site i during time period t. Let nt represent the number of sites that we have

observed data from in time period (season) t, so for each Zit, we have i = 1; 2; � � � ; nt
and t = 1; 2; � � � ; T . Note that in our application, the seasons are consecutive 8-day

intervals that partition 2011. The cameras may need maintenance and be off during

the research time, so we may have different number of sites that we got observations

from in different time periods.

Since measuring the distribution of a species is a primary goal of most studies

related to occupancy models, the true unknown occupancy status Zit or the occupancy

probabilities  it are of interest. However, since we only have noisy observed data, we

want to estimate these quantities by applying occupancy models to the observed data

denoted by Yit. Again, when Yit = 1, it means the species was detected and Yit = 0

otherwise. We should not just let Zit = Yit because it is challenging and almost

impossible to perfectly detect all species in a given survey [5].
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Occupancy models account for this imperfect detection mentioned in [19] by also

determining detection probabilities pit, which is the probability of successful detection

given presence of species. The detection probability pit can vary through space and

time because false absences can be caused by a number of reasons. For instance, in

our application it may be that the camera was only functioning for a subset of the

time period and was not on during the time when species present. Missed detection

can also occur because the environment may make it harder to see the species, e.g.

an area with an abundance of trees may block animals from view, etc.

Ignoring imperfect detection will cause severe bias in estimation [12]. Regarding

the fact that the observed data Yit can be very different from the true Zit, some stud-

ies have shown that detection probabilities can vary due to the type and abundance

of species. Benoit et al. (2018) [5] have applied multi-species occupancy model to

the data collected from a stream fish assemblage in Algonquin Provincial Park and

concluded that imperfect detection can lead to large changes in estimates of species

richness at the site level. MacNeil (2008)’s study used highly replicated Underwater

Visual Census (UVC) sampling of reef-fish species in Tanzania, East Africa, had found

that the detection probabilities of reef-fish species is influenced by many characteris-

tics such as body size and schooling behaviour and also changes across species [22].

Abundance or population of species [29] [16] is also a driver of change of detectability.

For example, for the European Snake species asp viper (Vipera aspis)Kery (2002)

[16], the detection probabilities of this species can raise from 0.23 to 0.50, and 0.70

for population size from small to medium, and large, implies that large population

may be easier to be detected. Therefore, accounting for imperfect detection in occu-

pancy models is important and necessary to avoid bias. In this paper our goal is to

improve the accuracy of parameter estimation by modifying the model of detection

probability for single species.
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As previously mentioned, we assume

[Zitj it] � Bernoulli ( it) ;

where  it denotes the probability of occupancy. Conditional on  it, the Zit are as-

sumed to be independent, so that all of the dependence in occupancy will be captured

through  it. Here we consider false absences (missed detection), and the detection

probabilities (denoted as pit) that can vary across space and time. We assume

[YitjZit; pit] � Bernoulli(Zitpit);

where pit is the probability that the species is detected if it is actually present. Note

that this model does not allow for false negatives. That is, if Zit = 0 then Yit = 0,

but if Zit = 1, then either Yit = 0 or Yit = 1.

Because both  it and pit are probabilities that lie between 0 and 1, we use the logit

link function to map [0; 1] to whole real line (�1;+1). Hepler et al (2018) developed

a spatio-temporal occupancy model and showed via simulation that it can be used

to accurately estimate occupancy parameters with just a single survey (observation)

per season, provided the number of seasons is sufficiently large [13]. This model

uses a centered autologistic model to capture the spatial and temporal dependence

in occupancy. This model provides the framework of the model we consider for

occupancy throughout this research. That is, we assume

logit( it) =

(
XT

it� + �
P

j�i(Zjt � �jt); t = 1

XT
it� + �

P
j�i(Zjt � �jt) + �(Zit�1 � �it�1); t = 2; 3; � � � ; T (2.14)

where logit( it) = log(  it

1� it
), j � i denotes the locations j that are neighbors of

site i, X it is a row in the design matrix X which contains all the environmental

covariates used to model occupancy probabilities, � is a vector of unknown regression

coefficients, � is the spatial dependence coefficient, � is the temporal dependence
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coefficient, and the centered term �it is the expected value of Zit given there are no

effects from neighbor sites or previous season. That is,

�it = E(Zitj� = 0; � = 0) =
eX T

it �

1 + eX T
it �

for i = 1; 2; � � � ; nt and t = 1; 2; � � � ; T .

Models with the centered term �it are called centered auto-logistic models, while

models without centered term (set �it = 0) are un-centered. Caragea and Kaiser

(2009) first introduced centered models and performed a simulation study that has

shown that centered spatial-only model significantly reduces bias in the estimates of

covariate effects when spatial dependence is weak to moderately strong [7]. They

use models consider environmental covariates and spatial effect, and compare the two

estimations of � of traditional (un-centered) model and centered model when spatial

dependence parameter � is 0, 0.5, and 1. The result shows that when � = 0, there is a

high agreement between two models; however, there appears bias in the estimation of

traditional model when � = 0:5, and the bias gets more severe when � = 1 while the

estimation of the centered model remain close to the true value of �. This study shows

that bias of un-centered model could get large when dependence parameter increases,

thus we should choose centered model in order to get more reliable estimation of �.

For detection probabilities pit, a traditional model as used in Hepler et al (2018)

[13] is

logit(pit) = W T
it� (2.15)

for i = 1; 2; � � � ; nt and t = 1; 2; � � � ; T , where W it is a vector of environmental

covariates from matrix W that can affect pit. � is a vector of unknown regression co-

efficients. Note that this model only considers effects from covariates. But intuitively,

people should also consider time dependence in estimating detection probabilities pit

because if a camera failed to detected a species (false absence), it is very likely that it
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will make this mistake again. For instance, when a camera is blocked by shrubs, the

accuracy of detection will be extremely low until someone come to fix it. Therefore,

in this paper, we will develop a new detection model that account for time depen-

dence in detection model, that means, the new model allow for correlation between

detection probabilities in consecutive seasons (8 day periods).
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Chapter 3: An Occupancy Model with Temporally

Auto-correlated Detection Processes

3.1 Methods

We specify models for the occupancy probabilities  it and detection probabilities

pit. We use a spatio-temporal centered auto-logistic model (2.14) for  it to relate

occupancy to the environmental covariates, the occupancy states of all the neighbor

sites, and the presence or absence of site i during the previous time period, t� 1. We

will later apply this model to data obtained single survey per season and Hepler (2018)

[13] performed a simulation study to show that as long as the number of seasons is

sufficiently large, this spatio-temporal model (2.14) can be fit to single survey data.

For detection probability pit, we extend the original model (2.15) to a centered

auto-logistic model including time dependence. That is,

logit(pit) =

(
W T

it�; t = 1

W T
it�+ �(Yit�1 � �0it�1); t = 2; 3; � � � ; T (3.1)

where

�0it =
Zit exp(W T

it�)

1 + exp(W T
it�)

: (3.2)

for i = 1; 2; � � � ; nt and t = 1; 2; � � � ; T . In equation (3.1), as mentioned before, W is a

design matrix contains the environmental covariates that will influence the detection

probabilities during each time period and the intercept term, and W it is a row from

this matrix. It is reasonable to regard environmental covariates such as the abundance

of trees as influential factors of detection probability. If our detecting target is small,

it can be sheltered by the shrub or trees of the site when the shutter is clicked. � is
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the regression parameter. � is the parameter that measures the influence of miss at

time period t� 1.

Again, �0it is the centering term, but this time is different from the one for occu-

pancy model. For occupancy model, we use Zit to subtract �it, the expected value

of Zit from the independent model [6] (the model without time and spatial depen-

dence). However, in our model (3.1), we let �0it be the expected value of Yit from the

independent model (given � = 0). Note that Yit�1 follows a Bernoulli distribution

with success probability Zit�1pit�1. The expected value is then

E(Yit�1) = Zit�1pit�1: (3.3)

For independent model (� = 0), we have:

pit�1 =
exp(W T

it�1�)

1 + exp(W T
it�1�)

:

Thus, we have the following multiplied by parameter � as the term measuring time

dependence:

Yit�1 � �0it�1 = Yit�1 � E(Yit�1) = Yit�1 � Zit�1pit�1 = Yit�1 �
Zit�1 exp(W T

it�1�)

1 + exp(W T
it�1�)

:

If the species occupied location i at time t � 1 but the camera failed to capture

anything, we will have Yit�1 = 0 and Zit�1 = 1, and the term Yit�1 � �0it�1 will be

� exp(W T
it � 1 � )

1+exp(W T
it � 1 � )

which is negative. If Yit�1 = 1 and Zit�1 = 1, we will have Yit�1 �

�0it�1 = 1
1+exp(W T

it � 1 � )
> 0.

To sum up, if a species failed to be detected given presence during season t � 1,

we will have � times a negative number, so pit will decrease. On the contrary, if the

camera successfully detected the species, we will have � times a positive value and
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this will larger pit. This implies that inaccuracy of the camera has negative effect on

the detection probability at the same site in later season, while a successful detection

can make the model be more confident about the camera’s detect-ability.

3.2 Simulation

We perform a simulation study comparing two models with different imperfect

detection processes. The first is our proposed model that accounts for residual tem-

poral autocorrelation in detection (using occupancy model (2.14) and detection model

(3.1)), and the other model does not consider time dependence in the detection pro-

cess (using the same occupancy model (2.14) and detection model (2.15) ). The goal

of the simulation study is to show that statistical inference is improved with the first

model whose detection process (3.1) borrows strength from previous misses, given

the data was collected by imperfect detection process with residual auto-correlation.

We will generate the fake observed data (Yit) according to some specific values of

parameters, and then fit those data to our considered models using OpenBUGS. Note

that the occupancy part of these two models are exactly the same, and they use the

same logistic model for the occupancy process.

In this simulation study, we use the environmental data from the motivating ap-

plication. We use 187 sites, distributed as shown in Figure 3.1, and for most of these

sites in each time period (8 days) we generate binary data (Zit = 0 or Zit = 1) using

specific parameter values and the real environmental covariates. As in our applica-

tion, we let T = 46 be the number of time periods, where the time periods are the

non-overlapping 8-day intervals in 2011. Note that not all cameras are functioning in

every time period, and so according to the data set, there are N = 4371 combinations

of sites and time periods observed.

We generate data from the model with occupancy process (2.14) and detection
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Figure 3.1: Distribution of the sites.

process (3.1). We use real environmental covariates values from our data set, and

we choose values of all parameters to simulate data (Yit, Zit). The occupancy design

matrix X contains environmental variables (1; x1; x2; x3), and the detection design

matrix W contains environmental variables (1; w1; w2). Where for X we choose

Normalized Difference Vegetation Index (NDVI), the square root of distance to nearest

river, and rainfall, and for W we choose the number of days the camera was on (up

to 8 days) and an indicator of forest. We account for the number of trees greater

than 2 m in height and are less than 50 m from the camera, if the number is larger

than 10 we regard this site as a forest region. We set the true values of parameters

to be: � = (�0; �1; �2)0 = (�1:5; 0:22;�0:35)0, � = 0:5, � = 0:45, � = 2, and

� = (�0; �1; �2; �3)0 = (�0:27; 0:9;�0:03; 0:75)0.
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According to our model, we can rewrite equation (2.14) as following:

�it =
eX T

it �

1 + eX T
it �
;

 it =
exp[XT

it� + �
P

j�i(Zjt � �jt) + �(Zit�1 � �it�1)]

1 + exp[XT
it� + �

P
j�i(Zjt � �jt) + �(Zit�1 � �it�1)]

:

(3.4)

Similarly, we can also write down detection probability by equation (3.1):

pit =
exp[W T

it�]

1 + exp[W T
it�]

; for t = 1; (3.5)

and

pit =
exp[W T

it�+ �(Yit�1 � �0it�1)]

1 + exp[W T
it�+ �(Yit�1 � �0it�1)]

; for t = 2; � � � ;T;

�0it =
Zit�1exp(W

T
it�)

1 + exp(W T
it�)

:

(3.6)

We generate the simulated data using a Gibbs sampling algorithm to simulate the

true occupancy field Z and data Y , which means we simulate by iteratively sampling

from the full conditional distributions (3.7). The reason we use Gibbs sampler is

that one of our target densities (the joint distributions of Z) has no closed form due

to the spatial dependence, but we do know the conditionals (3.8). The simulation

procedures are as following.

First, we set initial values of Z and Y (Z0 and Y 0) to both be zero vectors

with length 4371 (there are 4371 pairs of fi; tg as mentioned before) and rearrange

the Z 0s to have Z = (Z1;1; Z2;1; � � � ; Z1;2; Z2;2; � � � ; Zn46 ;46) = (Z1; � � � ; Z4371). We

use the same order to write p and  as vectors with length 4371 and generate a

sequence (pj;  j; Zj; Yj) each step from j = 1 to j = 4371. p1 and  1 are generated

by equations (3.4), (3.5), and (3.6) with Z = Z0 and Y = Y 0 then stored. Zj and
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Yj (1 � j � 4371) are computed by (3.7) (need to find the corresponding pair (i; t)

of j first)

Zi0t0j i0t0 � Bernoulli( i0t0)

Yi0t0jpi0t0; Zi0t0 � Bernoulli(Zi0t0pi0t0):
(3.7)

After getting Z2 and Y2, we replace the old Z0
2 and Y 0

2 with new ones then use the

restructured Z and Y to compute p2 and  2 and keep following this process. Once all

4371 Z 0s and Y 0s are observed, we form them to be Z1 and Y 1. Then continue this

process to do 10,000 iterations. Note that in the kth iteration, for each pair fi0; t0g, a

pair of probabilities f�i0t0; pi0t0g is computed using Zk�1 and Y k�1, and then Zk
i0t0 and

Y k
i0t0 are generated and updated using �i0t0 and pi0t0. By plugging (3.4) (3.5) (3.6) into

(3.7) , we can write the conditional distributions for k:

[Zi0;t0jZj�i0;t] = [Zi0;t0jZ�i0;�t0] = [ZkjZ1; Z2; � � � ; Zk�1; Zk+1; � � � ; Z4371];

[Yi0;t0jZi0;t0; Zi0;t‘0�1; Yi0;t0�1] = [Yi0;t0jY �i0;�t0;Z] = [YkjZ; Y1; Y2; � � � ; Yk�1; Yk+1; � � � ; Y4371]

for t > 1; and

[Yi0;1jZi0;1] = [Yi0;t0jZ; Y2; � � � ; Y4371]

for t = 1:

(3.8)

After 10,000 iterations, we end up getting Z10000 and Y 10000, and similarly, p10000 and

 10000. All four of them are vectors with length 4371.

Therefore, the process above is actually equivalent to getting samples from the

following conditional distributions starting at the first location and the initial time

26



0.1

0.2

0.3

0.4

0.5

0.6

0.7

p,2/10/2011

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p,2/18/2011

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p,2/26/2011

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p,3/6/2011

Figure 3.2: True detection probabilities p along with observed occurrences (black
points) for 4 consecutive 8-day periods.

period of the initial value (i.e. Y 1
1 and Z1

1):

[Zk+1
l jZk+1

1 ; Zk+1
2 ; � � � ; Zk+1

l�1 ; Z
k
l+1; � � � ; Zk

4371]

[Y k+1
l jY k+1

1 ; Y k+1
2 ; � � � ; Y k+1

l�1 ; Y
k
l+1; � � � ; Y k

4371; Z
k+1
1 ; Zk+1

2 ; � � � ; Zk+1
l ; Zk

l+1; � � � ; Zk
4371]

(3.9)

According to chapter 2, this is Gibbs sampler, so a fact holds that after implementing

this process for a lot of iterations (here we use 10,000) we get convergence. We extract

the Y , Z,  , and p from the last update to form a simulated data set, and repeat

the process 100 times to get 100 independent data sets.
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Figure 3.3: True occupancy probabilities  along with observed occurrences (black
points) for 4 consecutive 8-day periods.

Figure 3.2 and 3.3 shows the true detection probabilities p and  along with

observed occurrences Y (black points) for 4 consecutive 8-day periods from one data

set we generated. It can be observed that both detection and occupancy probabilities

vary over time and space.

3.3 Simulation Results

As previously mentioned, 100 data sets were generated from the proposed model.

We fit each data set using both our proposed model and the original model which
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does not account for time dependence in detection. The 100 posterior distributions

for each parameter under both models were derived using a Metropolis-within-Gibbs

MCMC algorithm in OpenBUGS. We made plots for two randomly selected consec-

utive seasons, Figure 3.4 and 3.4 shows the comparison of the estimated occupancy

and detection probabilities for these two models and the generated “true” occupancy

probabilities  and detection probabilities p for a data set randomly chosen from the

100 simulated data sets. The left column shows the true parameters, while the middle

two plots are the estimated posterior means from our time dependence model, and the

right column shows the result from the model which only consider environmental co-

variates but no temporal dependence in detection process. It can be observed that our

model which can borrow detection information from previous time periods accurately

estimated the probabilities, but the model that does not consider temporal depen-

dence in detection underestimated occupancy probabilities  while overestimating

detection probabilities p.

For parameters estimation, Table 3.1 shows the true values of all the parameters

along with the mean and standard deviation (in parentheses) of the 100 estimates

(posterior means) from the two models and Figure 3.6 and 3.7 shows the box-plots of

estimated occupancy parameters posterior means for 100 simulated data sets along

with generated true value of parameters (red line). In each plot the left box-plot

shows the estimations from the model we construct in order to account for temporal

dependence, and the right box-plot shows the result of the model which only consider

environmental covariates. From the table and the figures, we can see that our model

has excellent estimations on parameters �, �, �2, and �2 (the median of the 100

estimated posterior means is closer to the true value for each of these parameters

than the estimations from the model does not account for temporal dependence).

Although for parameter �1 in occupancy process the 100 estimated posterior means
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Figure 3.4: Comparison of true  and p, the posterior means of  and p from our
model with time dependence, and the posterior means of  and p from model without
considering time dependence (background color) for 1 simulated data set along with
generated observed presences Y (black points) on February 10th, 2011.

are smaller than the generated true value, it is still obvious that the left box-plot is

closer to the red line than the other one, which means our model has still has a better

estimation on �1.

To assess prediction, a receiver operating characteristic (ROC) curve is included in

Figure 3.8 to show the true positive rate (TPR) against the false positive rate (FPR).

We collect the prediction result from the last 5000 iterations for a simulated data

set, and we compute the posterior mean of the 4371 Z’s (presence/absence) over 5000

predictions. For some constant k between 0 and 1, if the posterior mean of Z is larger

than k, we say that our prediction of this Z is 1; otherwise, we say the prediction is
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Figure 3.5: Comparison of true  and p, the posterior means of  and p from our
model with time dependence, and the posterior means of  and p from model without
considering time dependence (background color) for 1 simulated data set along with
generated observed presences Y (black points) on February 18th, 2011.

0. So the two rates (TPR and FPR)are computed by

TPR =
The number of Posterior means > k when real cases are 1

The number of True Z0s = 1

FPR =
The number of Posterior means > k when real cases are 0

The number of True Z0s = 0
:

(3.10)

By choosing an arithmetic sequence of k’s ranging from 0 to 1, we can draw a ROC

plot figure 3.8. From the plot, it shows that our method yields a better prediction (the

black points) than the other model (the red points) because we have a relatively high

TPR and a low FPR. Table 3.2 shows the portion of true positive and false positive

when the true Z = 1 along with the portion of false negative and true negative

when the true Z = 0 of the two models given k = 0:4. The percentages outside
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Figure 3.6: Box-plots of estimated occupancy parameters posterior means for 100
simulated data sets along with generated true value of parameters (horizontal red
line). In each plot the left box-plot shows the estimations from the model we construct
which account for temporal dependence, and the right box-plot shows the result of
the model which only consider environmental covariates.

the parentheses are from our model and the ones inside the parentheses are result

from the model with out time dependence. We can see that our model has a smaller

number of type I errors but a slightly larger number of type II errors.

In short, our model using models (2) and (4) has a significantly better performance

and estimation of both occupancy and detection parameters and probabilities than the

model without time dependence in detection. This implies that considering temporal

dependence in detection process can significantly improve the accuracy of parameters

estimation. For the parameter of temporal dependence in detection process, our

model also get a good estimation. For prediction, our model still has a better ROC
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Figure 3.7: Box-plots of estimated detection parameters posterior means for 100
simulated data sets along with generated true value of parameters (horizontal red
line). In each plot the left box-plot shows the estimations from the model we construct
which account for temporal dependence, and the right box-plot shows the result of
the model which only consider environmental covariates.

curve and does better than the other one when true occupancy status is 1. Overall,

These results con�rm our belief that our model using models (2) and (4) is better

by capturing residual auto-correlation in detection and estimating occupancy and

detection parameters.
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True With Time Dependence Without Time Dependence
� 0 -1.5 -1.331(0.221) -1.083(0.218)
� 1 0.22 0.204(0.039) 0.355(0.089)
� 2 -0.35 -0.312(0.176) -0.287(0.235)
� 0.5 0.503(0.076) 0.334(0.054)
� 0.45 0.429(0.201) 1.110(0.114)
� 0 -0.27 0.018(0.260) -0.679(0.246)
� 1 0.9 0.387(0.173) 0.262(0.180)
� 2 -0.03 -0.030(0.003) -0.024(0.003)
� 3 0.75 0.621(0.139) 0.517(0.123)
� 2 1.865(0.189) -

Table 3.1: Comparison of true parameters and the means and standard deviations of
the 100 estimations from the two models

posterior means� 0.4 posterior means< 0.4
True Z=1 57.4%(52.7%) 42.6%(47.3%)
True Z=0 3.2%(1%) 96.8%(99%)

Table 3.2: Prediction result of true presences/absences from the two models
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Figure 3.8: ROC-plots of predicted species presence Z's. The black points represent
the TPR and FPR from our model (considers time dependence) while the red points
shows the rates for the model with out time auto-correlation.

35



Chapter 4: Application

4.1 Data Collection

In this section we apply three models to spatial and temporal data collected by

the Serengeti Snapshot project in 2011. For this speci�c data set we have 187 cameras

deployed in a 1125km2 grid in Serengeti National Park (SNP), Tanzania as mentioned

in chapter 1. We �t models for several species: Thomson's Gazelle, Zebra, Lion,

Wildebeest, and topi. We will only discuss the application result for Thomson's

Gazelle, and you can �nd tables of estimation result for other species in Appendix A.

For environmental covariates, as we introduced in Chapter 1, �rst is the Normal-

ized Di�erence Vegetation Index (NDVI) collected from NASA's Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) operating on the Terra satellite platform.

Higher NDVI values implies that the area contains a dense vegetation canopy. We

expect the NDVI parameter for Thomson's gazelle occupancy to be negative due to

the fact that small herbivores such as Thomson's gazelle will face a higher risk of

being hunted by predator like lions if they are in areas with dense vegetation [24].

The second covariates we consider for occupancy are the distance to the nearest river.

Intuitively, we expect species occupancy to be negatively related to river distance

and positively related to NDVI for living convenience; however, this is not true all

the time. As we will �nd in application results, some smaller herbivores such as

Thomson's gazelle and topi actually stay relatively far from river to avoid habitats

of predators. Since the river distance data is heavily skewed, here we use the square

root of distance instead. Other covariates for occupancy model are an indicator of

rain, tree density, and termite mound density. Where the relative density of termite

mounds within a 50 m radius of each camera is a very important to topi because they
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like standing on termite mounds (approximately 1 m in height) to get good views of

soundings to avoid attacked by predators[8], they also use termite mounds for mating

displays [15], so we expect topi occupancy to be positively related to termite mounds

density. For detection, we consider two covariates: the number of days the camera

was on during 8-day periods (seasons) and whether of not the camera was in a forest.

Obviously more days a camera was on implies larger probability of detection given

the species presence. We de�ne a forest region as an area with more than 10 trees in

a radius of 50m radius around the trap (camera).

4.2 Application Results

In this section we show the application of three models, including our model

accounting for time dependence in detection ((2.14) and (3.1)), the model does not

accounting for time dependence in detection ((2.14) and (2.15)), and a model which

is very similar to the second one but considers distinct intercept terms for detection

(i.e. 187 di�erent intercepts for 187 sites). We use distinct intercepts for the third

model in order to capture e�ects from other variables corresponding to locations.

Table 4.1 shows posterior means and standard deviations (in the parentheses) of

all the parameters for Thomson's gazelle. We can see a negative e�ect of NDVI and

NDVI 2 for all three models which is not surprising because predators like lions can

hide easier in an area with dense vegetation which implies higher risk of being killed

for Thomson's gazelles. For the same reason they tend to avoid wood areas [14], thus

we get positive e�ect of No Tree and negative e�ects of other tree indicators. Note

that we use three indicators for the categorical variable with 4 levels (none, sparse,

moderate, and dense) about tree density, and positive parameter of No Tree means the

species prefer no tree to dense tree. For spatial-temporal dependence in occupancy,

the table shows strong positive e�ects from neighbor sites in the current time period
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Variables Time Dependence No Time Distinct Intercept

O
cc

up
an

cy

Intercept -0.289(0.333) -0.380(0.265) -0.323(0.272)
NDVI -0.273(0.405) -0.352(0.413) -0.328(0.366)
NDVI 2 -0.160(0.413) -0.149(0.413) -0.125(0.409)p
River Dist 0.013(0.008) 0.003(0.006) 0.002(0.006)

Rain 0.036(0.268) 0.396(0.146) 0.461(0.161)
No Tree 0.131(0.255) 0.272(0.235) 0.244(0.226)

Sparse Tree -0.467(0.263) -0.381(0.234) -0.386(0.266)
Moderate Tree -0.155(0.330) -0.088(0.294) -0.205(0.300)

Spatial 0.926(0.079) 0.673(0.039) 0.674(0.041)
Temporal 0.728(0.227) 3.141(0.164) 3.141(0.198)

D
et

ec
tio

n Intercept -1.548(0.265) -1.211(0.269) -1.004(0.428) (average)
Days On 0.120(0.040) 0.289(0.041) 0.218(0.024)

Forest -0.263(0.191) -0.017(0.241) -0.158(0.256)
Temporal 2.942(0.274) { {

Table 4.1: Posterior means and posterior standard deviations from models of Thom-
son's Gazelle

and from the same site in the previous time period. In addition, our model has a

higher estimation of spatial dependence parameter and a lower estimation of temporal

dependence parameter than other models, which matches with the simulation (see

Figure 3.6 ). Figure 4.1 shows the posterior means of 187 intercepts in the third model

which considers distinct intercepts for occupancy, and we can see the large mass is put

around � 1:1, which corresponds with other two models. For detection in Table 4.1,

the �rst model shows that detection probabilities are strongly related to a previous

miss. When there was a false absence, according to equation (3.1), we will have� (here

is about 2.942 from the table) times (Tit � 1� Z it � 1+ � 0
it � 1 = 0 � 1+ � 0

it � 1 = � 0
it � 1� 1 < 0)

where � 0
it � 1 lies between -1 and 1 (see equation (3.2)). Therefore, positive� implies

negative e�ect from previous miss. The result tables for other species including lion,

zebra, wildebeest, and topi are listed in Appendix A.

For occupancy and detection probabilities, Figure 4.3 and 4.2 provides the esti-

mated  and p along with observed presencesY . Model 1 is our model, model 2
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Figure 4.1: Histogram of the posterior means of the 187 distinct intercepts of the
third model without time dependence.

is the model without time dependence in detection, and model 3 is similar to model

2 but consider distinct intercept in detection. Since the background color represents

the probabilities, we expect a good model to have more black dots (detected pres-

ences) on region with higher both occupancy and detection probabilities (more "red"

region). It can be found from the �gures that the two models who does not consider

time dependence in detection have good result for but relatively at estimation

of p. On the contrary, model one which is our model that allows the model to bor-

row information from previous miss has excellent estimation for both occupancy and

detection probability. Note that there are only a few environmental variables that

are able to inuence the detection probabilities, and this may make the information
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Figure 4.2: Comparison of estimations of occupancy probabilities of the three models.
Darker background color implies higher probability, and the black dots are detected
presence of Thomson's gazelle from May 17 - Jun 2, 2011.

from previous seasons be very important. We can conclude that for detection process,

previous miss does have strong e�ect on current season, and fail to capture it will

cause severe bias on estimation ofp.

For accuracy of prediction, Table 4.2 shows the WAICs for the three models men-

tioned as before for each species studied. For wildebeest, the WAIC of our model is

at least 103.25 lower than the other two model which do not account for time de-

pendence in detection. Note that our model is more complicated than the other two

but still get a lower WAIC, this implies a better �tting performance of our model

for wildebeest. For other species, the WAICs of our model are slightly higher (at
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