INVESTIGATION OF CIRCULATING FACTORS AS MEDIATORS OF MUSCLE MITOCHONDRIAL BIOENERGETIC CHANGES ASSOCIATED WITH AGING, DIET, AND EXERCISE

BY

JENNY L. GONZALEZ-ARMENTA

A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Molecular Medicine and Translational Science September 2021 Winston-Salem, North Carolina

Approved By:
Anthony J.A. Molina, Ph.D., Advisor
Carol A. Shively, Ph.D., Chair
Barbara J. Nicklas, Ph.D.
D. Clark Files, M.D.
Donald A. McClain, M.D., Ph.D.
DEDICATION

This dissertation is dedicated to those of us who dreamed of leaving a small town, dreamed of going to college, and dared to have our dreams come true. Never say never, don’t back down, and don’t forget that you deserve to be here.
ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Dr. Anthony Molina. When I met Anthony, I had no intentions of working in his lab. My original plan for graduate school, as most plans do, had fallen through and I was looking for a rotation in places that I wouldn’t have normally given a second thought. I put on a brave face, introduced myself to him, and joined the best lab that anyone could have asked for. Anthony has shown me what a mentor should be and has been an amazing mentor, advisor, role model, and friend over the last five years. Thanks for introducing me to the incredible world of aging research and mitochondrial bioenergetics; teaching me how to walk, talk, and write like a scientist; and going on many food adventures with me that sometimes turned into career advice sessions. I hope that I can continue to make you proud.

I would like to thank the members of my committee: Dr. Carol Shively, Dr. Barb Nicklas, Dr. Don McClain, and Dr. Clark Files. I thought carefully when choosing a committee to guide me and I may be biased, but I think I have the best committee I could have asked for. All of you have been so supportive and have made me a better scientist. Carol, thank you for always keeping me on track and pushing me to be better. Barb, thank you for allowing me to use samples for my work and always being available to give advice. Don, thank you for reminding me that the big picture is important and teaching me to always think ahead. Clark, thank you for your openness and willingness to always help out.

The Molina Lab felt like family from the second that I stepped foot into the lab. We have expanded and changed over the past five years, but the feeling has always been the same. Thanks for putting up with me on my best days and my worst days and for making
it a pleasure to come to work every day. Allie, thanks for being my grad school sister.
The love and support that we have been able to give each other throughout this process
is invaluable and I couldn’t have done it without you. Gargi, thank you for all of the
impromptu advice sessions and for editing everything I have ever produced. Phil, thanks
for rounding out the “trainee” section of the lab and always being there as a sympathetic
shoulder to commiserate with. Jenny, Amber, and Jemima, thanks for being incredible
technicians and making every project run smoothly. The UCSD lab has been a pleasure
to work with as well. Thank you, Stephen, Lina, Nina, Howard, and Stephanie for
everything that you guys do and for so graciously letting me use your space when I
needed to travel to San Diego to do experiments.

I would also like to thank one of the most amazing people I have had the opportunity to
work with, April Tuttle. Thank you for putting up with me through the planning and
execution of all of my travel throughout my PhD, for all of your help with scheduling
meetings and booking rooms, for being my non-science source for advice, and for just
being there when I needed a calm moment in the storm.

The Molecular Medicine and Translational Science program has been an amazing
opportunity to grow as a scientist and a person. I have been a part of such a great group
of graduate students and I would like to thank everyone for being so supportive and for
teaching me new things every time I sit down to listen to a lecture, seminar, or journal
club presentation. I would especially like to thank Dr. John Parks and Dr. Xuewei Zhu for
always asking the hard questions, their support, and for making my experience here so
valuable. I would also like to thank Kay Collare for always reminding us of deadlines and
making sure that we’re on track and for everything she has done to help me get to the
end.
I grew up in a small rural town, but I had so many great teachers who changed my life who deserve to be acknowledged. My third-grade teacher, Alison Lewis, sent me home with books bigger than I was and nurtured a love for reading that never wavered. Two of my science teachers in high school, Larry Spangler and Mark Davis, introduced me to science and made me believe in something bigger (or smaller) than myself. My favorite math teacher, Linda Chilton, and guidance counselor, Scott Carpenter, for believing in me and helping me fund my college education through scholarships that made it possible. I also want to thank Western Carolina University and the Chemistry and Physics Department as a whole for all of the experiences, opportunities, and relationships I developed there. I would especially like to thank Dr. Jamie Wallen, Dr. Carmen Huffman, Dr. Bill Kwochka, Dr. Channa De Silva, and Dr. Robert Youker for all of their support as I was choosing to pursue graduate school and continue my journey in science.

I would like to thank my family, both immediate and extended, for everything. It all started with you. I would like to thank my parents, Kent and Jeanette Collins, for instilling in me a drive to succeed, for teaching me to work hard and to do good work even if it takes more effort or time, and for supporting me through all of it. I would also like to thank all of the smart, strong, hardworking, and independent women in my family who were my role models and my champions.

I would also like to thank the many creators, artists, musicians, podcasters, and audiobook narrators who have made the work go by quickly.

Last, but certainly not least, I want to thank my best friend, husband, and biggest fan, Carlos. You gave me not one, but two last names, and more love and support than I could ever ask for. Solamente puedo decir gracias, amor, por todo que lograremos juntos: no puedo esperar.
TABLE OF CONTENTS

LIST OF ILLUSTRATIONS AND TABLES ... vii

LIST OF ABBREVIATIONS ... xii

ABSTRACT ... xv

CHAPTER ONE – INTRODUCTION .. 1

CHAPTER TWO – SKELETAL MUSCLE MITOCHONDRIAL RESPIRATION IS ELEVATED IN FEMALE Cynomolgus Macaques Fed a Western Versus Mediterranean Diet ... 61

CHAPTER THREE – HETEROCHRONIC PARABIOSIS: OLD BLOOD INDUCES CHANGES IN MITOCHONDRIAL STRUCTURE AND FUNCTION OF YOUNG MICE .. 113

CHAPTER FOUR – SERUM FACTORS MEDIATE THE BIOENERGETIC CHANGES OF DIET AND EXERCISE INTERVENTIONS ... 140

CHAPTER FIVE – DISCUSSION ... 204

CURRICULUM VITAE ... 232
LIST OF ILLUSTRATIONS AND TABLES

CHAPTER ONE – INTRODUCTION

Figure 1. Historical and projected life expectancy of U.S. population at birth from 1960 to 2060 ... 3

Figure 2. Historical and projected demographic shifts in the U.S. population 3

Figure 3. Compression of morbidity, healthspan, and optimal longevity 6

Figure 4. The hallmarks of aging .. 15

Figure 5. Links between mitochondrial dysfunction and the other hallmarks of aging .. 16

Figure 6. Mitochondrial networks in a pancreatic beta cell and the structure of an individual mitochondrion ... 18

Figure 7. Overview of the electron transport system 20

Figure 8. General features of aging mitochondria .. 26

Figure 9. Exercise attenuates many hallmarks of aging 29

Figure 10. Potential circulating factors present in blood that may impact mitochondrial function in the context of aging and diet and exercise interventions .. 34

CHAPTER TWO – SKELETAL MUSCLE MITOCHONDRIAL RESPIRATION IS ELEVATED IN FEMALE CYCNOLOGUS MACAQUES FED A WESTERN VERSUS MEDITERRANEAN DIET .. 61

Figure 1. Representative traces of high-resolution respirometry of permeabilized skeletal muscle fibers from a single female cynomolgus macaque 94
Figure 2. Effects of Western or Mediterranean diet on skeletal muscle bioenergetics of female cynomolgus macaques ..96

Figure 3. Correlations between permeabilized muscle fiber bioenergetics and insulin sensitivity of female cynomolgus macaques ..98

Table 1. Characteristics of female cynomolgus macaques fed either a Western diet or Mediterranean diet at necropsy ..100

Table 2. Correlations between carbohydrate metabolism phenotypes and respirometry of permeabilized muscle fibers of female cynomolgus macaques fed a Western diet ...101

Table 3. Correlations between carbohydrate metabolism phenotypes and respirometry of permeabilized muscle fibers of female cynomolgus macaques fed a Mediterranean diet ...102

Supplemental Table 1. Composition of Western and Mediterranean experimental diets ...103

Supplemental Table 2. Macronutrient composition of Western and Mediterranean experimental diets ...104

Supplemental Table 3. Summary of respiration measurements in each SUIT protocol ..105

Supplemental Table 4. Bioenergetic characteristics of female cynomolgus macaques fed either a Western or Mediterranean diet106
Supplemental Table 5. Correlations between carbohydrate metabolism phenotypes and respirometry of permeabilized muscle fibers of all female cynomolgus macaques in the study ...107

Supplemental Figure 1. Mean energy intake of female cynomolgus macaques fed either a Western or Mediterranean diet for 30 months108

Supplemental Figure 2. Flux control ratios and Western blot analysis of skeletal muscle from female cynomolgus macaques fed a Western or Mediterranean diet ...109

Supplemental Figure 3. Correlations between female cynomolgus macaque permeabilized muscle fiber bioenergetics and fasting blood insulin and insulin area under the curve ...111

CHAPTER THREE – HETEROCHRONIC PARABIOSIS: OLD BLOOD INDUCES CHANGES IN MITOCHONDRIAL STRUCTURE AND FUNCTION OF YOUNG MICE ..113

Figure 1. Electron microscopy of skeletal muscle from heterochronic parabiosis mice ..133

Figure 2. Western blot analysis of skeletal muscle from heterochronic parabiosis mice ..135

Figure 3. High-resolution respirometry of skeletal muscle from heterochronic parabiosis mice ..137

Supplemental Table 1. Summary of respiration measurements139
CHAPTER FOUR – SERUM FACTORS MEDIATE THE BIOENERGETIC CHANGES OF DIET AND EXERCISE INTERVENTIONS ...140

Table 1. Participant demographic and other characteristics at baseline180

Figure 1. Experimental design and serum-mediated bioenergetics181

Figure 2. Spearman correlations between change in serum-mediated max respiration and change in physical function and inflammatory cytokines183

Figure 3. Metabolomic analysis reveals potential candidate metabolites that could mediate bioenergetic changes in response to diet and exercise interventions ...185

Figure 4. Spearman correlations between change in serum-mediated max respiration and fold change of candidate metabolites ..187

Figure 5. Candidate metabolite treatment and bioenergetics189

Supplemental Table 1. Unadjusted mitochondrial respiration and physical function measurements at baseline and changes with intervention191

Supplemental Table 2. Model adjusted post-intervention mitochondrial respiration and physical function measurement least-square means and adjusted group differences ..192

Supplemental Table 3. Spearman correlations between change in mitochondrial respiration measurements and change in physical function and inflammatory cytokines for all participants ...193
Supplemental Table 4. Spearman correlations between change in mitochondrial respiration measurements and change in physical function and inflammatory cytokines by intervention group ..194

Supplemental Table 5. Spearman correlations between change in mitochondrial respiration measurements and change in physical function and inflammatory cytokines by sex ...195

Supplemental Table 6. Parameters used for classification of responder status ..196

Supplemental Table 7. Spearman correlations between change in mitochondrial respiration measurements and fold change of metabolites197

Supplemental Figure 1. Changes in cell count after serum treatment198

Supplemental Figure 2. Sex differences in serum-mediated bioenergetics200

Supplemental Figure 3. Heat map and scores plot for top 25 metabolites202

CHAPTER FIVE – DISCUSSION...204
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1RM</td>
<td>One repetition maximum</td>
</tr>
<tr>
<td>31P-MRS</td>
<td>Phosphorus magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Analysis of covariance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BCAA</td>
<td>Branched-chain amino acid</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>Calcium</td>
</tr>
<tr>
<td>CETF</td>
<td>Electron transferring flavoprotein complex</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CPT</td>
<td>Carnitine palmitoyl transferase</td>
</tr>
<tr>
<td>CR</td>
<td>Caloric restriction</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CS</td>
<td>Citrate synthase</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ETS</td>
<td>Electron transport system</td>
</tr>
<tr>
<td>FADH$_2$</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FAO</td>
<td>Fatty acid oxidation</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>FCCP</td>
<td>Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone</td>
</tr>
<tr>
<td>GH</td>
<td>Growth hormone</td>
</tr>
<tr>
<td>GPDH</td>
<td>Glycerol phosphate dehydrogenase</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>Homeostatic model of insulin resistance</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-like growth factor 1</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Interleukin-1β</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>I'M FIT</td>
<td>Improving Muscle for Functional Independence Trial</td>
</tr>
<tr>
<td>iv-GTT</td>
<td>Intravenous glucose tolerance test</td>
</tr>
<tr>
<td>MAM</td>
<td>Mitochondria-associated endoplasmic reticulum membrane</td>
</tr>
<tr>
<td>Mat-sf</td>
<td>Mobility assessment tool - short form</td>
</tr>
<tr>
<td>mtDNA</td>
<td>Mitochondrial deoxyribonucleic acid</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mechanistic target of rapamycin</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near-infrared spectroscopy</td>
</tr>
<tr>
<td>OCR</td>
<td>Oxygen consumption rate</td>
</tr>
<tr>
<td>OXPHOS</td>
<td>Oxidative phosphorylation</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>Rot</td>
<td>Rotenone</td>
</tr>
<tr>
<td>RT</td>
<td>Resistance training</td>
</tr>
<tr>
<td>SAA</td>
<td>Serum amyloid A</td>
</tr>
<tr>
<td>SASP</td>
<td>Senescence associated secretory phenotype</td>
</tr>
<tr>
<td>SDH</td>
<td>Succinate dehydrogenase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SPPB</td>
<td>Short physical performance battery</td>
</tr>
<tr>
<td>SUIT</td>
<td>Substrate-uncoupler-inhibitor titration</td>
</tr>
<tr>
<td>SRC</td>
<td>Spare respiratory capacity</td>
</tr>
<tr>
<td>T2D</td>
<td>Type II diabetes</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricarboxylic acid</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor-α</td>
</tr>
<tr>
<td>UCP1</td>
<td>Uncoupling protein 1</td>
</tr>
<tr>
<td>UCP3</td>
<td>Uncoupling protein 3</td>
</tr>
<tr>
<td>VDAC</td>
<td>Voltage dependent anion channel</td>
</tr>
</tbody>
</table>
ABSTRACT

As older adults continue to live longer and, as a result, with more comorbidities, there is a need to understand the cellular and molecular processes, including mitochondrial dysfunction, that are implicated in healthy aging and age-related diseases. Our lab and others have pioneered the use of blood cells as reporters of systemic mitochondrial bioenergetic capacity based on the premise that these circulating cells are continuously exposed to a myriad of factors that mediate bioenergetic capacity across multiple tissues. In support of this theory, our lab has demonstrated that blood cell mitochondrial bioenergetics can recapitulate the bioenergetics of brain, skeletal muscle, and cardiac muscle and that increased circulating IL-6 is associated with decreased mitochondrial bioenergetic capacity in blood cells. However, direct evidence supporting the effect of circulating factors on bioenergetics is limited. Therefore, the overarching hypothesis of my work is that there are circulating factors in blood associated with aging (and consequently, age-related diseases and interventions to improve healthspan) that can mediate systemic bioenergetic capacity. In Chapter Two, we found that long-term consumption of a Western diet resulted in elevated skeletal muscle mitochondrial bioenergetics of female cynomolgus macaques when compared to Mediterranean diet and that increased respiration was associated with increased insulin resistance, particularly with Western diet. In Chapter Three, we used a heterochronic parabiosis mouse model to investigate the effects of circulating factors on mitochondrial structure and function. We found a greater negative effect of old blood on young heterochronic mice, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. In Chapter Four, we developed a novel in vitro method to determine the effects of human serum from older adults who completed
resistance training or resistance training plus caloric restriction interventions on muscle cells. We demonstrated that our method recapitulated the expected results of the intervention, i.e. improved bioenergetic capacity and differences between intervention groups, and identified potential circulating factors responsible for mediating mitochondrial bioenergetics associated with diet and exercise intervention. Taken together, this body of work provides evidence that circulating factors mediate bioenergetic capacity in multiple contexts: aging, diet, and exercise.
CHAPTER ONE:

INTRODUCTION

Jenny L. Gonzalez-Armenta
I. AGING POPULATIONS

A. The aging world population and shifting demographics

Since the 1950s, the global average lifespan has dramatically increased, allowing people across the world to live an average of 10 to 20 years longer (1). In 2020, the World Health Organization estimated that over 1 billion people, or 13.5% of the global population, are adults over the age of 60 which is 2.5 times larger than the population of older adults in 1980 (1). The population of older adults is expected to grow and reach 2.1 billion people by 2050 (1). The increase in lifespan is largely due to improvements in quality of life, the prevention and treatment of diseases, and decreases in mortality at birth (2–5). In low- to middle-income countries, the increase is driven by reduced mortality in young people, particularly in childhood, while in high-income countries lifespan continues to increase due to reduced mortality of older adults (6).

In the United States, the average lifespan has increased from 69.7 years in 1960 to 79.4 years in 2015 and is projected to increase to 85.6 years in 2060 as shown in Figure 1 (adapted from (7)). Moreover, the proportion of older adults in the United States is increasing. By 2030, the entire Baby Boomer generation, individuals born between 1946-1964, will be over the age of 65 and older adults are projected to outnumber children (<18 years old) for the first time in history (8). This has resulted in a demographic shift from a pyramid shape showing a large number of children and young adults and small numbers of older adults in 1960 to a pillar or column where projected population age groups are more evenly distributed with a large number of older adults living into their 70s and 80s as shown in Figure 2. These trends are also mirrored in the global population (9). This demographic shift associated with increased lifespan raises concerns about society’s ability to plan for and accommodate longer lives, as aging will affect nearly every aspect of society, including: economic growth, retirement, and the

Figure 2. Historical and projected demographic shifts in the U.S. population. Adapted from U.S. Census Bureau, National Population Projections. (2017) and U.S. Census Bureau, Older People Projected to Outnumber Children. (2018)
ability of governments and communities to provide resources for older adults (10). On the other hand, it should be noted that increased lifespan and shifting demographics have benefits for society as well. Economically, longer lifespans, and consequently, an increased proportion of the population is of working age, results in increased per capita income, tax revenues, and the potential for increased personal savings and investments (11). Additionally, older adults are more likely to be law-abiding, politically active, volunteer and help the wider community, and regularly provide family support and care for children and grandchildren (12, 13).

B. Increased lifespan is associated with increased morbidity in older adults

The global average lifespan has increased, while healthspan, the period in which individuals are healthy and disease-free, has not increased at the same rate (14). An average of 16-20% of life is spent in late-life morbidity, defined as the incidence of one or more chronic diseases or disabilities (14, 15). This period of morbidity is more pronounced among women, individuals who are obese, and people from lower socioeconomic statuses (14). Aging itself is the greatest risk factor for the leading causes of morbidity and mortality in older adults: heart disease, stroke, cancer, diabetes, kidney disease, Alzheimer's disease, and Parkinson’s disease (14, 16). In addition, these diseases often occur together and are sometimes referred to as “comorbidities of aging” (16). In 2014, 80% of Medicare beneficiaries had at least two chronic conditions, and 60% reported at least 3 chronic conditions (17). We can expect these rates of comorbidities to increase as the aging population continues to grow.

In 1980, James Fries introduced the compression of morbidity paradigm (18). He noted that most illnesses were chronic and occurred later in life and hypothesized that the lifetime burden of illness could be reduced if the onset of chronic illness was delayed (19). This theory has influenced gerontologists in the biology of aging to shift their focus
from lifespan extension to identifying biological mechanisms and strategies to increase healthspan (16). Indeed, baby boomers report a strong interest in remaining healthy, active, productive, and independent until the end of life (16). Therefore, optimal longevity for both gerontologists and older adults is to live a long life but remain healthy and well until the end as shown in Figure 3 (adapted from (16)).

C. Chronological versus biological age

In gerontology, we often hear a common anecdote about older adults. On one hand, some 80-year-olds are completely independent, physically active, and mentally alert and appear younger than their age (think Dr. Anthony Fauci). On the other, there are some 55-year-olds with multiple comorbidities who seem to have aged more rapidly than others in their age group. While chronological age, the number of years someone has been alive, is useful in aging research, it would be more beneficial if we could use a metric to account for these differences in overall health. Biological age, or a composite age that takes into account a person’s functional status and biomarkers of aging, has been introduced as an alternative to chronological age. To date, biological age has been measured using many methods, including frailty index, measures of DNA methylation, composite scores of blood-based biomarkers, and other age-related phenotypes (autophagy, mitochondrial function, cellular senescence, etc.) (20–23). Current and future research is focused on determining the biomarkers and methods that are most closely related to function, can predict health-related outcomes, and can be used to test and develop interventions to prevent or delay the progression of multimorbidity and disability with aging (22).
II. THE BIOLOGY OF AGING

A. Theories of aging

Over 70 years of biological, epidemiological, and demographic research has generated several theories that have attempted to identify causes or processes that explain aging (24). However, aging is an extremely complex and multifactorial process. Therefore, the theories of aging are not mutually exclusive and may describe some or all aspects of the aging process and may need to be combined with other theories (24). For the purpose of this dissertation, I have described several key theories of aging that can be broadly classified into four categories: evolutionary, molecular, cellular, and system theories of aging.

i. Evolutionary theories

Broadly, the evolutionary theories of aging argue that evolution primarily occurs to maximize reproductive fitness and that longevity is a trait that would be selected only if it was beneficial during the reproductive period (24). These theories began to form in the 1940s based on observations of Huntington’s Disease (25). Huntington’s Disease is the result of a lethal autosomal dominant mutation that remains in the population even though it should, in theory, be selected against. However due to the late onset of the disease in patients well into their 30s and even 40s, allows for the carrier to reproduce before dying, therefore avoiding natural selection and allowing the mutation to be passed on. This observation inspired the mutation accumulation theory of aging in 1952 which states that detrimental, late-acting mutations may accumulate in the population and ultimately lead to pathology and senescence in individuals as they age (26). Initial experiments in Drosophila appeared to support mutation accumulation theory: increased mutations late in life seemed to contribute to aging and senescence, though the authors
could not rule out other theories of aging, such as antagonistic pleiotropy (27–29). However, later experiments and further analyses have cast doubt on these conclusions (30, 31).

Other evolutionary theories of aging focus on evolutionary trade-offs as the basis of aging. For instance, antagonistic pleiotropy theory, proposed in 1957, posits that genes selected for their beneficial effects early in life may have unselected deleterious effects later in life that lead directly to senescence (32). Additionally, the disposable soma theory (1977), argues that a somatic organism is only maintained for reproductive success and, therefore, the soma becomes disposable after reproduction (33). There must be trade-offs in balancing resources between growth, reproduction, and somatic maintenance, leading to progressive cellular damage and senescence with age (34). There is experimental evidence for these trade-offs in *Drosophila* and *C. elegans*. Increased body size, longer development times, and reduced early fecundity, or reproductive ability, are all associated with longer lifespans in *Drosophila* and reduced fecundity has been causally linked to increased lifespan (35, 36). Similar trade-offs between longevity and early life fitness have been reported in *C. elegans*, though there are contradicting reports, and there is evidence that the effects of mutations can be strongly influenced by the environment (37–39).

It should be noted that these evolutionary theories were developed before the discovery of the mitochondrial genome and were based on the available knowledge of the nuclear genome (40). Consequently, the role of the mitochondrial genome, the coordination between the mitochondrial and nuclear genomes, and the influence of maternal inheritance of mitochondrial DNA are not taken into account in these theories (40).
ii. Molecular theories

Gene regulation theory was first introduced in 1975 which argues that senescence is a result of changes in gene expression and that longevity is influenced by the selection of genes that promote longevity (41). Indeed, many genes show changes in expression over the lifespan (42–45). Studies of centenarians and their relatives have also found a significant influence of genetics on longevity (46–50). However, it is more likely that aging is driven primarily by a balance of damage and repair processes influenced by environmental factors and genetic variation (51). Further evidence for gene regulation theory is the discoveries of signaling pathways that regulate lifespan in model organisms, such as insulin-like growth factor 1 (IGF-1) (52–54) and the mechanistic target of rapamycin (mTOR) pathways (54–56).

iii. Cellular theories

The cellular senescence theory of aging was first presented in 1965 and described senescence as the process that limits the number of cell divisions that normal human cells can undergo in culture (57). This number of cell divisions, also referred to as the Hayflick limit, results in terminally arrested cells that exhibit altered physiology (24). Replicative senescence is ultimately driven by the shortening and eventual loss of telomeres with each cell division and has been extensively studied in cell culture (24, 58). Additionally, early cell culture experiments demonstrated that replicative potential was negatively associated with donor age and cells from short-lived organisms appear to senescence earlier than longer-lived organisms (24). Telomerase-deficient mice do not exhibit accelerated aging and the phenotypic effects of telomerase deficiency are not observed for several generations, suggesting that telomere shortening alone cannot explain normal aging in mice (59, 60). However, in an aging animal model using the African turquoise killifish, it was found that telomeres shorten with age, have similar
telomere length as humans, and telomerase mutants exhibit some signs of accelerated aging (61–64). It is difficult to test replicative senescence in humans, but evidence from genetic disorders such as Dyskeratosis congenita, a disease resulting in altered telomerase RNA subunit metabolism, suggests that telomere shortening plays a role in human aging, although severe pathology develops over multiple generations similar to rodent models of telomere deficiency (65, 66). Senescence can also occur in response to stressors such as DNA damage, oxidative stress, modifications in heterochromatin structure, or signals in response to oncogene expression (24, 58). This stress-induced senescence is a cellular response to age-related molecular changes that can aggravate or accelerate aging (24). Senescence likely contributes to the aging process through the senescence-associated secretory phenotype or SASP (67). The SASP is composed of various cytokines, chemokines, growth factors, and extracellular matrix proteases that reinforce senescence, affect the local tissue environment, and the entire organism (67).

The free radical theory of aging (1957) argues that free radical reactivity is inherent in biology and results in cumulative damage and senescence (68). Reactive oxygen species (ROS) are found in all cellular environments (69). ROS are produced during mitochondrial respiration (complex I, complex III, glycerol-3-phosphate dehydrogenase, and α-ketoglutarate dehydrogenase all produce free radicals) and superoxide dismutase (SOD), the cellular superoxide scavenger, is found in all aerobic organisms (69, 70). There is evidence of oxidative damage to DNA, proteins, and lipids (24). It is clear that oxidative damage increases with age, but it is not clear if this damage contributes to aging in all organisms. Alterations in ROS production or ROS scavengers alter lifespan in Drosophila and C. elegans (24, 71–73). However, in rodent models, dietary antioxidants and ubiquitous overexpression of SOD do not result in lifespan extension (74, 75). Mutations in SOD produce mice that are sick and die quickly, but there is
limited evidence for accelerated aging (24). Additionally, chronic exposure to ionizing radiation, which generates free radicals, actually results in lifespan extension in mice (76).

iv. System theories

In these systems theories of aging, the decline of the nervous, endocrine, and immune systems is considered essential to the aging process. The neuroendocrine theory of aging was first introduced in 1954 and describes aging as the progressive loss of hypothalamic receptor sensitivity to negative feedback inhibition (40). A potential neuroendocrine regulator of aging, the growth hormone (GH) and insulin-like growth factor 1 (IGF-1) axis, has been studied for many years. GH is a key regulator of metabolism and somatic growth, either directly or via other pathways, such as IGF-1 signaling (77). GH signaling blocks insulin action, stimulates lipolysis, and inhibits lipogenesis, while IGF-1 signaling has the opposite effects (77). Many genes that regulate lifespan in model organisms are direct or indirect homologs of these pathways (52, 78, 79). Also, mutations in these genes have been linked to increased stress resistance and lifespan in yeast, worms, and flies (80–82). In centenarians, an overrepresented heterozygous mutation in the IGF-1 receptor results in reduced activity, suggesting that IGF-1 signaling and longevity are linked (83).

The immune system is essential for clearing infections, foreign matter, tissue debris, and wound healing (40). This type of immune response is adaptive and acute inflammation that returns to baseline levels after responding to these events (84). However, resting levels of inflammation increase with age (85). This progressive, age-related, chronic, and sterile low-grade inflammation forms the basis of another theory of aging called inflammaging (85). Levels of inflammatory cytokines are consistently elevated in older adults, particularly interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (86–89), and
these increased levels of pro-inflammatory cytokines are associated with several age-related diseases, including atherosclerosis, Alzheimer's disease and other dementias, insulin resistance and diabetes, and cancer (90–96). Further, macrophages and senescent cells secrete many pro-inflammatory mediators and have been implicated as major sources of chronic inflammation (97–100), thus these associations suggest that inflammaging plays an important role in aging and the development of age-related diseases.

v. Summary of theories of aging and implications

Aging is an extremely complex and multifactorial process that involves multiple biological mechanisms. Through several decades of research, scientists have produced many theories of aging. The evolutionary theories seek to explain the detrimental effects of aging by arguing that natural selection drives improved development and reproduction, rather than longevity. According to molecular theories, aging is the result of changes in gene expression and DNA damage. The cellular theories argue that aging is due to cellular senescence and is driven by shortened telomeres, cellular stress, and the effects of ROS. In the system theories of aging, the neuroendocrine and immune systems decline over the lifespan and drive aging processes.

While each of these theories presents valid arguments and evidence to support their claims, they cannot explain the entire aging process on their own. On their own, they cannot show the interconnectedness between various theories of aging, how one aspect of aging could impact another, what aspects of aging should be targeted, and how aging should be studied. Instead, it is far more useful to use them together in an attempt to explain the aging process, rather than as individual theories.
B. Hallmarks of aging

To study the progression of aging and identify targets to combat aging and age-related diseases, nine cellular and molecular hallmarks have been proposed and are shown in Figure 4 (101). These hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intracellular communication (101). These hallmarks are widely considered to contribute to the aging process and form the aging phenotype when taken together (101). Moreover, these hallmarks integrate all of the various theories of aging and provide a framework to guide future research: each hallmark is observed during normal aging and should accelerate and slow aging when experimentally manipulated (101). It should be noted that the hallmarks of aging are not independent factors driving aging, but are often intertwined and interrelated processes.

Mitochondria have been linked to many of the other hallmarks of aging, including the decline of stem cell function by regulation of metabolites such as NADH (nicotinamide adenine dinucleotide) and the regulation of cellular senescence by modulating metabolism and ROS generation (102, 103). Additionally, modulating the mitochondrial unfolded protein response results in increased longevity and improved proteostasis, improved mitochondrial quality control increases lifespan, and mitochondrial dysfunction has been linked to increased inflammation by activation of the innate immune system in response to damaged unmethylated mtDNA entering the cytosol (102, 103). An overview of the links between mitochondrial dysfunction and the other hallmarks of aging is shown in Figure 5.

Mitochondria seem to be playing a central role in the aging process. Our lab is interested in mitochondrial function and its role in healthy aging, the progression of age-related
diseases, and interventions to improve healthspan. This dissertation will focus on two of those aspects: the roles of mitochondrial function in healthy aging and interventions that improve healthspan.
Figure 4. The hallmarks of aging. Adapted from C Lopez-Otin, et al., The Hallmarks of Aging. Cell, 1194-1217 (2013).
Figure 5. Links between mitochondrial dysfunction and the other hallmarks of aging. Adapted from S van der Rijt, et al., Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol, 1-12 (2020).
III. MITOCHONDRIA

Mitochondria are organelles found in most eukaryotic organisms (104). The prevailing hypothesis is that mitochondria were originally prokaryotic cells that were engulfed by a proto-eukaryotic cell forming an endosymbiotic relationship that enabled eukaryotic cells to evolve (105). Modern mitochondria are organelles that are responsible for generating most of the cellular energy in the form of ATP (adenosine triphosphate) (106). Mitochondria are also involved in many other cellular processes, including: signaling, differentiation, cell death, and cell growth (106, 107).

A. Mitochondrial structure

Mitochondria are dynamic organelles that exist in various sizes and networks within each cell. Each mitochondrion consists of two membranes: an inner membrane and an outer membrane. The two membranes create three other distinct parts of the mitochondrion: the intermembrane space, cristae (folds of the inner membrane), and matrix (space within the inner membrane). A view of mitochondrial networks and the structures of an individual mitochondrion are shown in Figure 6 (adapted from (108, 109)).

The mitochondrial outer membrane contains large numbers of channel-forming proteins called porins (also called voltage-dependent anion channels or VDAC) (104). These porins allow for the free flow of small molecules less than 5 kDa (104). Other proteins embedded in this membrane include enzymes involved in lipid synthesis and conversion of lipid substrates to be transported and metabolized in the matrix, import receptors for mitochondrial proteins, and the enzymatic machinery for fission and fusion of the mitochondrial outer membrane (104). This membrane can also associate with the endoplasmic reticulum (ER) via a mitochondria-associated ER-membrane (MAM) structure (110).
Figure 6. Mitochondrial networks in a pancreatic β-cell and the structure of an individual mitochondrion. Adapted from AJA Molina et al, Mitochondrial Networking Protects β-Cells from Nutrient-Induced Apoptosis, Diabetes, 2303-2315 (2009) and JB Reece et al, Campbell Biology, 10th ed. (2014).
The intermembrane space has a similar concentration of small molecules as the cytosol (104). This space also contains several enzymes that use ATP transported from the matrix to phosphorylate other nucleotides (104).

The inner membrane contains no porins, is rich in cardiolipin, and has a very high protein to phospholipid ratio (3:1) (104, 110). Thus, the inner membrane is highly impermeable to most molecules and requires transport proteins that regulate the passage of metabolites in and out of the mitochondrial matrix (104). This membrane also contains the proteins of the electron transport system (ETS) and ATP synthase (104). An electrochemical gradient of H+ forms a membrane potential across the inner membrane and is used to drive ATP synthase (104).

The inner membrane is folded many times and forms structures called cristae. These cristae increase the surface area of the inner membrane and allow for an enhanced ability to produce ATP (104). Cells that have higher energy demands such as cardiac or skeletal muscle have greater amounts of cristae (104).

The mitochondrial matrix contains hundreds of enzymes, including the enzymes involved in the oxidation of pyruvate and fatty acids and the enzymes of the tricarboxylic acid (TCA) cycle (104). The matrix also contains mitochondrial ribosomes, transfer RNA, and several copies of mtDNA (104).

B. Mitochondrial function

i. Energy conversion

The major role of mitochondria in the cell is to produce ATP by oxidative phosphorylation using pyruvate and fatty acids, from the breakdown of sugars and fats, as fuel (104). An overview of this process is shown in Figure 7 (adapted from (111)). These fuels are
Figure 7. Overview of the electron transport system. Adapted from E Gnaiger, *Mitochondrial Pathways and Respiratory Control: An Introduction to OXPHOS Analysis* (2014).
transported across the mitochondrial inner membrane where they are converted to acetyl CoA in the matrix and oxidized in the TCA cycle to produce NADH, FADH$_2$ (flavin adenine dinucleotide), and CO$_2$ (carbon dioxide) (104). NADH and FADH$_2$ are high-energy carrier molecules that allow for the transfer of electrons through complexes I and II of the ETS in the mitochondrial inner membrane (104). In the ETS, a series of redox reactions occur as electrons are passed from complexes I and II (or from alternate sources such as GPDH from G3P or CETF from fatty acids), to coenzyme Q, complex III, cytochrome c, and complex IV (104, 111). Oxygen is reduced to water as the final electron acceptor at complex IV (104). The energy produced by the redox reactions is used to pump protons across the mitochondrial inner membrane at complexes I, III, and IV (104). The movement of protons produces an electrochemical gradient that exerts a proton-motive force that drives protons back to the mitochondrial matrix through complex V or ATP synthase (104). ATP synthase is made up of two parts: a transmembrane proton carrier (F$_0$) and a rotating portion (F$_1$ ATPase) (104). The proton-motive force pushes a proton through the F$_0$ portion which physically rotates the F$_1$ ATPase to drive the reaction of ADP and P$_i$ to create ATP (104). This allows energy to be stored in this chemical bond for future reactions throughout the cell (104).

Oxidative phosphorylation allows eukaryotic cells to produce more energy than prokaryotes and the majority of energy is produced in animal cells via this mechanism. For example, oxidative phosphorylation of one molecule of glucose has a net yield of ~30 ATP molecules compared to a net yield of ~2 molecules of ATP from glycolysis alone (104). A large amount of ATP is also produced from the oxidation of fatty acids which has a net yield of ~129 ATP molecules from the complete oxidation of palmitate, a 16-carbon fatty acid (104).

ii. Other functions

In some cells, mainly brown adipose tissue, mitochondrial respiration is uncoupled from ATP synthesis (104). Uncoupling protein 1 (UCP1) allows protons to freely move across the mitochondrial inner membrane and bypass ATP synthase, allowing the energy to dissipate by the production of heat (104). In brown adipose tissue, this allows the cells to metabolize fatty acid stores and generate heat through non-shivering thermogenesis (112). There is also increasing evidence that white adipose tissue can become “beige” adipose tissue by expressing UCP1 which contributes to systemic energy homeostasis (112).

Mitochondria also play a role in calcium (Ca^{2+}) homeostasis by transiently storing Ca^{2+}. Some functions of Ca^{2+} and mitochondria include: (1) to regulate mitochondrial metabolism by accumulating Ca^{2+} in the mitochondrial matrix, resulting in transient membrane potential depolarization, (2) to act as a Ca^{2+} buffer by regulating the Ca^{2+} concentration in cellular microdomains and therefore regulating Ca^{2+} signaling in the cell, and (3) to trigger cell death by mitochondrial uptake of large amounts of cellular Ca^{2+} under pathological conditions (113).

C. Methods for measuring mitochondrial function

Mitochondrial isolation techniques were developed in 1948 and accelerated the progress of understanding mitochondrial function (104). Most of the early studies were performed using isolated mitochondria from the liver, where each cell contains about 1000-2000 mitochondria that make up about 20% of total cell volume (104). Since molecular oxygen is the final electron acceptor of the ETS, the change in oxygen concentration (commonly referred to as oxygen flux or oxygen consumption rate) can be measured to calculate mitochondrial respiratory rates (111). This technique is referred to as mitochondrial
respirometry. Isolated mitochondria, whole cells, or tissues can be probed with fuels, inhibitors, and uncouplers to examine specific complexes of the ETS or the ETS as a whole. Today, mitochondrial respirometry is still the gold standard for measuring mitochondrial function because it allows for the direct investigation of the ETS in real-time, though the context of the isolated mitochondria, cells, or tissues must be considered when interpreting the results. There are three main technologies available for performing mitochondrial respirometry: Clark-type electrodes, the Oroboros O2k, and the Seahorse Extracellular Flux Analyzer. The bulk of experiments in this dissertation will include respirometry, either high-resolution respirometry performed with the Oroboros O2k or high-throughput respirometry performed with the Seahorse Extracellular Flux Analyzer.

Other methods of measuring mitochondrial function have various advantages and disadvantages. ATP content can be measured in vitro using various colorimetric, fluorescent, or luminescent probes that can often be purchased as a kit. While relatively easy to measure, the amount of cellular ATP does not consistently report on actual mitochondrial function and further experiments are needed to determine if changes in the amount of ATP are connected to changes in mitochondrial function (114).

The rate of ATP synthesis can be measured kinetically using a luciferase-based bioluminescent approach developed by Lanza and Nair (115). This approach also allows for the introduction of various substrates and inhibitors and uses small amounts of isolated mitochondria, but will need multiple conditions to probe individual pathways through the ETS (i.e. succinate and rotenone to measure complex II-mediated respiration) (115). This method is a cost-effective alternative to mitochondrial respirometry, but the interpretation must consider that isolated mitochondria are taken
out of cellular context and that various aspects of mitochondrial function do not always end in ATP production (i.e. leak respiration, ROS production, uncoupling, etc.).

Microscopy allows for the examination of changes in mitochondrial shape, distribution, and appearance and various fluorescent probes can be used to measure other parameters such as mitochondrial membrane potential (114). This allows for the observation of these changes in real-time and within cellular context. While changes in shape, distribution, appearance, and membrane potential are associated with changes in mitochondrial function, these changes do not directly report on mitochondrial respiration and should be carefully interpreted or used in combination with mitochondrial respirometry (114).

The gene expression, protein expression, and activities of representative complexes of the ETS, enzymes of the TCA cycle, transcription factors involved in mitochondrial biogenesis, or markers of fusion and fission are often measured as surrogates of mitochondrial function (114). Again, though the expression of these genes or proteins and enzyme activities are associated with mitochondrial function, these changes do not directly report on mitochondrial respiration and should be carefully interpreted or used in combination with mitochondrial respirometry.

More recently, imaging techniques have been used to measure mitochondrial function in vivo, including phosphocreatine recovery following depletion after exercise by phosphorus magnetic resonance spectroscopy (31P-MRS) and monitoring tissue oxygenation during exercise with near-infrared spectroscopy (NIRS) (116). 31P-MRS is used as a measure of ATP production and NIRS is used as a measure of oxygen consumption (116). These techniques are non-invasive, safe, and physiologically relevant, but require equipment and expertise, can be expensive, and require
assumptions and modeling to interpret them (116). These in vivo techniques also lack specificity and the ability to explore mechanisms when compare to in vitro methods.

D. Mitochondria and aging

i. General features of aging mitochondria

In general, aging is accompanied by a decline in mitochondrial function as shown in Figure 8. Studies have found reduced respiratory capacity in older adults, both by reduced phosphocreatine recovery time and reduced mitochondrial respiration (117–119). Many mitochondrial enzyme activities decrease with increasing age, such as succinate dehydrogenase, citrate synthase, cytochrome c oxidase, and β-hydroxyacyl-CoA dehydrogenase (120–122). Reduced mitochondrial DNA (mtDNA) copy number and increased number of mtDNA mutations have been positively associated with age in both animal and human subjects (122–125). Additionally, decreased mitochondrial content and decreased mitochondrial dynamics are associated with aging (124, 126).

ii. Links between aging, body composition, physical function, and mitochondria

The prevalence of obesity increases with age and obesity is associated with increased incidences of cardiovascular diseases, diabetes, physical function decline, sarcopenia, frailty, and mortality (127–131). Increasing age is also associated with decreased lower limb strength (132, 133). This decline in strength leads to slower gait speed, short physical performance battery (SPPB) scores, and reduced 400-meter walk time; all of these measures are potent predictors of disability and mortality in older adults (134–140). Active older adults have higher mitochondrial content and respiratory capacity than sedentary older adults and higher mitochondrial function is associated with improved walking performance in 400-meter walk time (141, 142). Increased subcutaneous,
Figure 8. General features of aging mitochondria.

- ↓ respiratory capacity
- ↓ mito enzyme activities
- ↓ mtDNA copy number
- ↑ mtDNA mutations
- ↑ ROS production
- ↓ mito content
- ↓ mito dynamics
intermuscular, and intramyocellular lipid impairs muscle function and can lead to physical function decline (143, 144). Waist circumference can predict the development of insulin resistance and abdominal obesity is associated with reduced mitochondrial respiration (130, 145). Reductions in the number of subsarcolemmal mitochondria and reduced expression and activities of mitochondrial electron transport chain proteins have been observed in insulin-resistant, obese subjects (146, 147). In addition, our lab has shown that reduced mitochondrial function is associated with increased BMI and adiposity and that improved physical function is associated with improved mitochondrial function in older adults in both blood cells and skeletal muscle tissue (148–150). While the connections between aging, adiposity, physical function, and mitochondrial function are fairly established, few studies have examined the molecular mechanisms involved.
IV. INTERVENTIONS TO IMPROVE HEALTHSPAN

Exercise and lifestyle interventions have shown promise in attenuating the hallmarks of aging and improving healthspan. For example, exercise has been shown to decrease DNA damage, prevent telomere shortening, and change DNA methylation; increase autophagy for improved proteostasis; activate nutrient signaling pathways; improve mitochondrial function and content; reduce senescence; and reduce inflammation (151). The effects of exercise on hallmarks of aging are summarized in Figure 9 (adapted from (151)). Diet and exercise have been shown to improve mitochondrial function in a variety of models and age groups (152–157). Similar changes have also occurred in severely obese adults that had lost weight, including: reduced energy expenditure, increased work efficiency, and increased protein expression of mitochondrial electron transport chain proteins (158). When sedentary adults are compared to active adults, mitochondrial respiration and markers of fusion and fission are not associated with chronological age but rather strongly associated with biological age, through measures of adiposity and cardiorespiratory fitness (159). Even though caloric restriction and exercise can independently improve insulin sensitivity in older adults, only aerobic exercise increased mitochondrial content and the activities of the electron transport chain and fatty acid oxidation enzymes in one study (160). In combination, caloric restriction and aerobic exercise consistently result in improvements in oxidative capacity, mitochondrial content, and the activities of respiratory chain enzymes (161–164). Resistance training alone has been associated with increases in mitochondrial content, mitochondrial enzyme activities, and mitochondrial respiration, even without weight loss (165–167). Mitochondrial changes induced by diet and exercise are not limited to skeletal muscle and have been observed in the brain, pancreatic beta cells, and skin.
Figure 9. Exercise attenuates many hallmarks of aging. Adapted from N Garatachea et al, Exercise attenuates the major hallmarks of aging, Rejuvenation Res, 57-89 (2015).
The mechanisms of these mitochondrial changes are not known and further investigation should be completed to begin to understand this process.

Additionally, early lifestyle interventions for individuals with prediabetes and type II diabetes (T2D) have been shown to prevent or delay the progression of the disease (171). The American Diabetes Association recommends weight loss for individuals who are obese or overweight that have or are at risk for developing T2D as the first line of treatment (171). A meta-analysis of lifestyle weight-loss interventions in obese and overweight adults with T2D showed overall trends for improved lipid profiles, decreased blood pressure, and hemoglobin A1c (171). While the overall trends were not statistically significant, the studies that reported greater than 5% weight loss showed statistically significant improvements (171). Another study indicated that a combination of diet and exercise, through caloric restriction and resistance training, can result in 5% weight loss and significantly reduce the presence of metabolic syndrome in obese and overweight older adults when compared to resistance training alone (172). However, losing 5% or more of total body weight is considered an intensive intervention, and the feasibility of such weight loss outside of a clinical trial is questionable. While the majority of participants experience improvements in physical function during lifestyle interventions, other studies have shown that responses are heterogeneous with wide ranges of improvement and a subset of participants that show no changes or a decline after an intervention (173). There is a need to determine the mechanism of how lifestyle interventions can improve metabolic parameters and determine which individuals will respond best to what intervention.
V. BLOOD AND CIRCULATING FACTORS

Circulating factors seem to play a central role in aging, disease processes, and the beneficial effects of lifestyle interventions. Using parabiosis, researchers have been able to show that circulating factors play a role in many processes, such as aging, in a variety of tissues: skeletal muscle, liver, brain, skin, and bone (174–180). Our lab has recently completed experiments that reveal heterochronic parabiosis leads to decreased mitochondrial bioenergetic capacity in young mice connected to old mice (see Chapter Three for more detail). Previous work in our lab has also shown that blood cell bioenergetics can recapitulate brain, skeletal muscle, and cardiac muscle respiration. Maximal respiration in mitochondria isolated from the frontal cortex was significantly and positively correlated with maximal respiration in monocytes (181). Respiration in permeabilized skeletal muscle fibers and cardiac muscle isolated mitochondria were also significantly and positively correlated with maximal respiration in monocytes (150). Our lab has also shown that increased levels of circulating interleukin-6 (IL-6) are associated with decreased mitochondrial bioenergetic capacity in peripheral blood mononuclear cells, further supporting a role for circulating factors in mediating mitochondrial metabolism (148). Furthermore, many of the mitochondrial changes associated with aging are systemic and have been shown in multiple tissues, including the brain, heart, skeletal muscle, and liver (122, 182). Taken together, this information suggests that there is a potential role for circulating factors in mediating the age-related decline in mitochondrial function and that this decline can have multiple mechanisms of action, including changes in mitochondrial enzyme expression, mitochondrial content, and reduced mitochondrial dynamics.

Many studies have also included investigations of individual circulating factors in various contexts, such as: aging, obesity, diabetes, diet, and exercise. Circulating levels of IL-6,
IL-1β, tumor necrosis factor-α (TNF-α), and c-reactive protein (CRP) increase with age (85, 183–187). In centenarians, an increased level of IL-10 has been associated with lower amounts of inflammation and longevity (183). Circulating adipokines, such as adiponectin, increase with age and have been linked to the risk of mortality and developing cardiovascular disease (188). Circulating levels of various hormones, including triiodothyronine, growth hormone, insulin-like growth factor-1 (IGF-1), cortisol, luteinizing hormone, and follicle-stimulating hormone have all been associated with age (189). Sirtuins have been associated with longevity and have been protective against age-related diseases in rodent models (189).

Several circulating factors have been identified as being associated with age-related diseases, such as obesity and T2D. In the general population, inflammatory markers such as CRP, fibrinogen, and IL-6 are associated with cardiovascular disease (CVD) and death and, within the context of T2D, IL-6 is a strong and independent predictor of CVD (190–194). Obesity alone is associated with increased levels of growth factors and binding proteins involved in the growth hormone and insulin-like growth factor system (195). However, obese individuals with T2D had a different combination of upregulation and downregulation of these factors and proteins (195). Other studies have associated metabolites with adiposity and insulin resistance, including: carnitine, triacylglycerols, branched-chain amino acids, and other lipids and hormones (196–199).

In resistance training interventions with older adults, studies have found reductions in CRP, IL-6, leptin, and TNF-α and increases in IL-10 and adiponectin when compared to controls (200–203). Other studies have found that caloric restriction and weight loss are associated with decreases in IL-6, leptin, CRP, and serum amyloid A (SAA) (204, 205). Another study identified specific circulating microRNAs that predicted physical function response to exercise in older adults (206). A summary of potential circulating factors
implicated in aging, diet, and exercise is presented in Figure 10. When combined, these data suggest that circulating factors are not only involved in aging and the progression of age-related diseases such as obesity and T2D, but also the response to exercise and weight loss. Additionally, many studies involving exercise and weight-loss interventions in older adults have focused mainly on circulating factors associated with inflammation, highlighting the need to identify other circulating factors for future investigation.
Figure 10. Potential circulating factors present in blood that may impact mitochondrial function in the context of aging and diet and exercise interventions.
VI. SUMMARY OF RESEARCH

As older adults continue to live longer and, as a result, with more comorbidities, there is a continuing need to understand the cellular and molecular processes underlying both healthy aging and age-related diseases. In 2013, cellular and molecular hallmarks were proposed to guide the study of aging, including mitochondrial dysfunction. Mitochondrial dysfunction is multifaceted and includes: reduced respiratory capacity, decreased mitochondrial enzyme activities, decreased mtDNA copy number, increased mtDNA mutations, increased ROS production, decreased mitochondrial content, and decreased mitochondrial dynamics in older adults and organisms. These changes are systemic and have been observed in many tissues, including the brain, heart, skeletal muscle, and liver. Diet and exercise have been shown to improve healthspan and many of the hallmarks of aging, including mitochondrial function, in a variety of models and age groups. Again, these changes are systemic and have been shown in many tissues. Furthermore, our lab and others have shown that blood cell mitochondrial bioenergetics can recapitulate the bioenergetics of the brain, skeletal muscle, and cardiac muscle and that increased circulating IL-6 is associated with decreased mitochondrial bioenergetic capacity in blood cells. Moreover, this information suggests that there is a potential role for circulating factors in mediating the age-related decline in mitochondrial function and the corresponding improvements from interventions such as diet and exercise.

The overarching hypothesis of my work is that there are circulating factors in blood associated with aging, and consequently, age-related diseases and interventions to improve healthspan, that can mediate systemic bioenergetic capacity. This hypothesis guided the body of work presented in this dissertation. In Chapter Two, we examined the effects of long-term consumption of whole dietary patterns, either a Mediterranean or Western diet, on skeletal muscle mitochondrial bioenergetics of female cynomolgus
macaques. In Chapter Three, we investigated the effects of circulating factors on skeletal muscle mitochondrial structure and function in a heterochronic parabiosis mouse model. In Chapter Four, we developed a novel method to determine the effects of human serum on muscle cells in vitro and used metabolomics to identify potential circulating factors responsible for mediating changes in mitochondrial bioenergetics in response to resistance training and caloric restriction. Finally, in Chapter Five, I discuss the implications of the work described in this dissertation.
REFERENCES

59. M. A. Blasco, et al., Telomere shortening and tumor formation by mouse cells lacking telomerase RNA.

62. S. Valdesalici, A. Cellerino, Extremely short lifespan in the annual fish Nothobranchius furzeri.

64. N. Hartmann, et al., Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri.

66. T. Vulliamy, et al., The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.

195. J. Frystyk, C. Skjærbaek, E. Vestbo, S. Fisker, H. Ørskov, Circulating levels of free
insulin-like growth factors in obese subjects: the impact of Type 2 diabetes.

196. R. A. Murphy, _et al._, Metabolites Associated With Lean Mass and Adiposity in Older

197. U. N. Das, Is there a role for bioactive lipids in the pathobiology of diabetes

198. V. T. Samuel, K. F. Petersen, G. I. Shulman, Lipid-induced insulin resistance:

199. D. E. Kelley, B. H. Goodpaster, Stewing in Not-So-Good Juices: Interactions of

200. A. S. Ribeiro, _et al._, Effect of resistance training on C-reactive protein, blood
glucose and lipid profile in older women with differing levels of RT experience. _Age_

201. L. N. Forti, _et al._, Strength training reduces circulating interleukin-6 but not brain-
derived neurotrophic factor in community-dwelling elderly individuals. _Age_ **36**, 9704
(2014).

202. M. D. Phillips, _et al._, Resistance training reduces subclinical inflammation in obese,

203. B. F. De Salles, _et al._, Effects of resistance training on cytokines. _Int. J. Sports

CHAPTER TWO:

SKELETAL MUSCLE MITOCHONDRIAL RESPIRATION IS ELEVATED IN FEMALE CYNOMOLGUS MACAQUES FED A WESTERN VERSUS MEDITERRANEAN DIET

Jenny L. Gonzalez-Armenta, Zhengrong Gao, Susan E. Appt, Mara Z. Vitolins, Kristofer T. Michalson, Thomas C. Register, Carol A. Shively, and Anthony J.A. Molina

This manuscript was published in the Journal of Nutrition.

doi: 10.1093/jn/nxz092

First published online: May 21, 2019

Stylistic variations are due to the requirements of the journal.

Jenny L. Gonzalez-Armenta performed experiments, analyzed data, and prepared the manuscript.
Skeletal muscle mitochondrial respiration is elevated in female cynomolgus macaques fed a Western versus Mediterranean diet \(^1,2,3,4\)

Jenny L. Gonzalez-Armenta,\(^5,6,7\) Zhengrong Gao,\(^6,7\) Susan E. Appt,\(^8\) Mara Z. Vitolins,\(^9\) Kristofer T. Michalson,\(^8\) Thomas C. Register,\(^6,8\) Carol A. Shively,\(^6,8\) and Anthony J.A. Molina \(^6,7,10,*\)

\(^5\)Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

\(^6\)J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

\(^7\)Department of Internal Medicine, Section on Gerontology and Geriatrics, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

\(^8\)Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

\(^9\)Department of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.

\(^10\)Department of Medicine, Division of Geriatrics and Gerontology, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.

*Corresponding author: Anthony J.A. Molina

University of California San Diego School of Medicine

Division of Geriatrics and Gerontology
Supplemental Tables 1-5 and Supplemental Figures 1-3 are available from the “Supplementary data” link in the online posting of the article and from the same link in the online table of contents at https://academic.oup.com/jn.

Abbreviations

AUC: area under the curve
BCA: bicinchoninic acid
CPT: carnitine palmitoyl transferase
CPT1: carnitine palmitoyl transferase 1
CS: citrate synthase

ER: endoplasmic reticulum

ETS: electron transport system

FAO: fatty acid oxidation

FCCP: carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

HOMA-IR: homeostatic model of insulin resistance

iv-GTT: intravenous glucose tolerance test

Rot: rotenone

SDH: succinate dehydrogenase

SUIT: substrate-uncoupler-inhibitor titration

UCP3: uncoupling protein 3

3 Sources of Financial Support

This work was supported by the following grants: R21 AG051077 (NIH, AJAM), 15MCPRP25680019 (AHA, AJAM), R01 HL087103 (NIH, CAS), R01 HL122393 (NIH, TCR), and the Wake Forest Claude D. Pepper Older Americans for Independence Center (P30 AG21332).

4 Conflict of Interest and Funding Disclosure

Jenny L. Gonzalez-Armenta, no conflict of interest
Zhengrong Gao, no conflict of interest

Susan E. Appt, no conflict of interest

Mara Z. Vitolins, no conflict of interest

Kristofer T. Michalson, no conflict of interest

Thomas C. Register, no conflict of interest

Carol A. Shively, no conflict of interest

Anthony J.A. Molina, no conflict of interest
Abstract

Background. Western diets are associated with increased incidences of obesity, hypertension, diabetes, and hypercholesterolemia, while Mediterranean diets, richer in polyphenols, monounsaturated fats, fruits, vegetables, poultry, and fish, appear to have cardiometabolic health benefits. Previous work has included population-based studies with limited evidence for causation or animal studies focused on single macro or micronutrients; therefore, primate animal models provide an opportunity to determine potential mechanisms underlying the effects of dietary patterns on health and disease.

Objective. Our objective was to determine the effects of whole dietary patterns, either a Western or Mediterranean diet, on skeletal muscle mitochondrial bioenergetics in cynomolgus macaques.

Methods. In this study, 22 adult female cynomolgus macaques (approximately 11-14 years by dentition) were fed either a Western or Mediterranean diet for 30 months. The Western diet was designed to mimic the diet of a middle-aged American woman and the Mediterranean diet included key aspects of Mediterranean diets studied in humans, such as plant-based proteins and fat, complex carbohydrates, and fiber. Diets were matched on macronutrient composition (16% protein, 54% carbohydrate, and 31% fat) and cholesterol content. Skeletal muscle was collected for high-resolution respirometry, citrate synthase activity, and western blot measurements. Pearson correlation analysis between respirometry measures and measures of carbohydrate metabolism was also performed.

Results. We found that consumption of a Western diet resulted in significantly higher mitochondrial respiration with FAO (53%), FAO + complex I (52%), complex I + II (31%), max ETS (31%), and ETS Rot sensitive (31%) when compared to the Mediterranean diet.
Additionally, measures of respiration in response to fatty acids were significantly and positively correlated with both insulin resistance and plasma insulin concentrations.

Conclusions. This study highlights the importance of dietary composition in mitochondrial bioenergetics and that diet can influence skeletal muscle mitochondrial respiration, independent of other factors, such as macronutrient composition.

Keywords: Western, Mediterranean, diet, skeletal muscle, mitochondria, bioenergetics, non-human primates
Introduction

Typical Western diets contain high amounts of saturated fats, sucrose and fructose, proteins from red meats, sodium, and low amounts of monounsaturated and polyunsaturated fats. Consumption of a Western diet has been associated with increased incidences of obesity, all-cause mortality, cancer, kidney disease, osteoporosis, hypertension, type 2 diabetes, and hypercholesterolemia (1–3). In contrast, Mediterranean diets are composed of high amounts of monounsaturated fats from mainly plant sources such as olive oil, fruits, vegetables, and proteins from poultry and fish sources. Consumption of a Mediterranean diet has been associated with reduced risk of developing diabetes, cancer, cardiovascular disease, and Alzheimer's disease (4–7). These associations with dietary patterns have been elucidated primarily by population-based epidemiological studies; therefore, there is limited evidence for causation and a need for mechanistic insights.

Animal studies have reported that a high-fat diet increases fatty acid, but not pyruvate, malate, or glutamate, mediated respiration of mitochondria isolated from skeletal muscle (8–10). Increased expression of oxidative phosphorylation proteins and uncoupling protein 3 (UCP3) were also observed. When mice were fed a high fat and high sucrose diet, increased mitochondrial respiration in permeabilized skeletal muscle fibers, increased citrate synthase (CS) and carnitine palmitoyl transferase (CPT) activity, and increased expression of UCP3, CS, and complex I was observed (11). Rodents in these studies were obese and insulin resistant, but not overtly diabetic. In humans, previous studies demonstrate decreased mitochondrial enzyme activity in subjects with type 2 diabetes and obesity. Obese subjects had lower succinate dehydrogenase (SDH or complex II) activity (12), lower CPT activity (13), and lower cytochrome c oxidase activity (complex IV) (14). When mitochondrial function was examined by respirometry, no differences in respiration
between obese and lean subjects were observed (15). Diabetic subjects had lower NADH:ubiquinone oxidoreductase (complex I) activity and CS activity (16). Diabetics also exhibited lower skeletal muscle mitochondrial respiration than healthy controls (17). These subjects also had decreased levels of mitochondrial DNA and CS activity, suggesting that there was lower mitochondrial density in their skeletal muscle, a potential cause for their decreased mitochondrial respiration.

In this study, we have examined the effects of whole dietary patterns, either a Mediterranean or a Western diet, on skeletal muscle mitochondrial bioenergetics. It is unlikely that the negative effects of a Western diet or the positive effects of a Mediterranean diet are due to a single dietary component. To our knowledge, the study presented here is the first to report on the effects of whole dietary patterns on skeletal muscle mitochondrial bioenergetics. We utilized cynomolgus macaques to examine the effects of whole diets administered for 30 months, approximately equivalent to 8 human years. We performed bioenergetic profiling of skeletal muscle comprised of high-resolution respirometry of permeabilized muscle fibers, with and without fatty acid substrates, tissue citrate synthase activity, and western blot analyses.

Methods

Experimental model and study design

The ancillary study described here examined 22 randomly selected female cynomolgus macaques (*Macaca fascicularis*) ranging from approximately 11 to 14 years that were available from a larger parent study. The parent study included 42 female cynomolgus macaques and was designed to test the effects of Mediterranean versus Western diet on a broad range of health outcomes (18).
Animals were housed in small social groups of 3-4 in pens measuring 3.3 m x 3.3 m x 3.3 m, on a 12 h/12 h light/dark schedule. Animals were fed either a Western or Mediterranean diet designed and produced by the Primate Nutrition and Diet Laboratory at Wake Forest School of Medicine for 30 months. For the parent study, animals were assigned to either diet treatment using stratified randomization, balanced on pretreatment characteristics that reflect overall health, including body weight, body mass index, basal cortisol, and plasma lipid concentrations. Diet composition is shown in Supplemental Table 1 and macronutrient composition is shown in Supplemental Table 2. These semi-purified diets were matched on protein, fat, carbohydrate, and cholesterol content. The Western diet was designed to be similar to consumption of middle-aged American women, with protein and fat derived from mainly animal sources and high in saturated fats and sodium (19). The Mediterranean diet was designed to mimic key aspects of the Mediterranean diet, including protein and fats from mainly plant sources, higher amounts of monounsaturated fats, high in complex carbohydrates and fiber, and lower amounts of sodium (20,21). In particular, the Mediterranean diet included English walnut powder and extra virgin olive oil, which were key ingredients included in the PREDIMED study (22). Water was available ad libitum. Skeletal muscle tissue (Vastus lateralis) for bioenergetics analyses was collected at the time of necropsy. Animals were first sedated with intramuscular ketamine hydrochloride (15 mg/kg), then intravenous sodium pentobarbital (approximately 13 mg/kg) was administered to achieve surgical anesthesia, and exsanguinated in accordance with guidelines established by the Panel on Euthanasia of the American Veterinary Medical Association. All procedures were conducted in compliance with state and federal laws, standards of the US Department of Health and Human Services, and the Animal Care and Use Committee of Wake Forest School of Medicine. All procedures and protocols were reviewed and approved by the Wake Forest School of Medicine Animal Care and Use Committee.
Body mass measurements

Body length (suprasternal notch to pubic symphysis) was measured during month 27 of the treatment phase and body weight was measured on the day of necropsy. BMI (kg/m2) was calculated as described previously (23).

Insulin, glucose, and insulin sensitivity measurements

Intravenous glucose tolerance tests (iv-GTT) with insulin responses were done during treatment phase month 26 as previously described (24). Briefly, animals were sedated (15 mg/kg) after an 18 hour fast and administered 500 mg/kg dextrose. Blood samples were taken at 0, 5, 10, 20, 30, 40, and 60 min. Glucose AUC and k were calculated as previously described (23). Area under the insulin curve was calculated using insulin responses between 10-40 min. Glucose concentrations were determined by colorimetric assay using reagents and instrumentation (ACE Alera autoanalyzer) from Alfa Wasserman Diagnostic Technologies (West Caldwell, NJ, (25)). Insulin was determined by enzyme-linked immunosorbent assay (Mercodia, Uppsala, Sweden). HOMA-IR was calculated as described previously (26).

Energy intake measurements

Energy intake was measured in the parent study (18). Briefly, each monkey was offered 120 kcal of diet per kilogram of body weight per day for the duration of the study (30 months) and experimental diets were weighed before and after the meal to calculate calories consumed. Additionally, all monkeys were provided enrichment several times per week, including flavored noncaloric ice cubes two times per week, rice krispies one time per week, and low-calorie vegetables such as celery one time per week.

Preparation of permeabilized skeletal muscle fibers
Immediately after euthanasia, skeletal muscle tissue (Vastus lateralis) was removed. Approximately 10-15 mg of tissue was selected for mechanical separation as described previously (27). The tissue was placed in ice-cold BIOPS (10 mM Ca-EGTA buffer, 0.1 µM free calcium, 20 mM imidazole, 20 mM taurine, 50 mM K-MES, 0.5 mM DTT, 6.56 mM MgCl₂, 5.77 mM ATP, 15 mM phosphocreatine, pH 7.1) The tissue was cut into smaller bundles of approximately 5 mg and separated mechanically with sharp angular forceps under magnification, permeabilized with saponin (30 mg/mL) for 30 min on ice, and washed with MiR05 (110 mM sucrose, 60 mM K⁺-lactobionate, 0.5 mM EGTA, 3 mM MgCl₂, 20 mM taurine, 10 mM KH₂PO₄, 20 mM HEPES, 1 mg/mL BSA, pH 7.1) or buffer Z (105 mM K-MES, 30 mM KCl, 1 mM EGTA, 10 mM K₂HPO₄, 5 mM MgCl₂·6H₂O, 0.5 mg/mL BSA, pH 7.4) for 15 min on ice before analysis.

High-resolution respirometry of permeabilized skeletal muscle fibers

Two substrate-uncoupler-inhibitor titration (SUIT) protocols were used to examine mitochondrial bioenergetics with and without fatty acid oxidation. Approximately 2.5 mg of tissue was added to each chamber and steady-state rate of respiration measurements were obtained after every substrate addition and expressed as pmol · s⁻¹ · mg⁻¹.

For the SUIT protocol with fatty acids, high-resolution O₂ flux measurements were conducted in 2 mL of MiR06Cr (MiR05 containing 20 mM creatine and 280 U/mL catalase) using the Oroboros Oxygraph-2k (O2k; Oroboros Instruments, Innsbruck, Austria). This protocol was adapted from Pesta and Gnaiger (27) and completed as follows: 7.5 mM ADP, 0.5 mM octanoylcarnitine, 2 mM malate, 10 µM cytochrome c to test for mitochondrial membrane integrity, 5 mM pyruvate, 10 mM glutamate, 50 mM succinate, two additions of 0.25 µM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) followed by a titration of 0.5 µM FCCP to obtain maximal ETS capacity, 10 mM glycerol-3-phosphate, 0.5 µM rotenone, and 5 µM antimycin-A.
For the SUIT protocol without fatty acids, high-resolution O$_2$ flux measurements were conducted either in 2 mL of buffer Z containing 20 mM creatine and 25 μM blebbistatin to inhibit contraction (28). This protocol was completed as follows: 2 mM malate, 4 mM ADP, 20 mM pyruvate, 10 mM glutamate, 10 mM succinate, 10 μM cytochrome c to test for mitochondrial membrane integrity, two additions of 0.25 μM FCCP followed by a titration of 0.5 μM FCCP to obtain maximal ETS capacity, 0.5 μM rotenone, and 5 μM antimycin-A.

Respiration parameters measured in these SUIT protocols are summarized in **Supplemental Table 3**.

To further examine the effects of diet on mitochondrial bioenergetics we also calculated flux control ratios. Flux control ratios were calculated by dividing each respiration parameter by maximum respiration (27).

Citrate synthase activity assay

Citrate synthase (CS) activity was determined according to manufacturer's instructions (Citrate synthase assay kit, Sigma CS0720, St. Louis, MO). Briefly, skeletal muscle (Vastus lateralis) was homogenized in cold CelLytic MT (Sigma C3228) at pH 7.4 and protease inhibitor cocktail (Sigma P8340). The homogenized sample was centrifuged at 12,000 g for 10 min and the supernatant containing the protein was collected. Protein concentration was determined by bicinchoninic acid (BCA) protein assay (Pierce; Rockford, IL). CS activity was measured by continuous spectrophotometric rate determination at 412 nm. Each sample was run in triplicate.

Western blotting

Skeletal muscle (Vastus lateralis) homogenate was loaded at a concentration of 30 μg total protein per well for separation by SDS-PAGE and transferred to PVDF membranes.
The membranes were blocked at room temperature for 1 hour in 5% nonfat dry milk in TBS containing 0.1% Tween-20. Blots were probed overnight at 4°C with primary antibodies (VDAC/Porin, Abcam, ab15895; GAPDH, Abcam, ab9484; CPT1b, Invitrogen, PA5-12218) and incubated with the appropriate horseradish peroxidase-conjugated anti-IgG antibody. Antibody-bound protein was detected by enhanced chemiluminescence and quantified by densitometry with ImageJ.

Statistical analysis

Distributions of all variables were examined before any further analysis. Normality was assessed by Shapiro-Wilk tests and any variables that were not normally distributed were log transformed to achieve a normal distribution (FAO + complex I, FAO max ETS capacity, FAO ETS rot sensitive, body weight, fasting glucose, fasting insulin, glucose AUC, and insulin AUC). Statistical significance between groups was evaluated by unpaired two-tailed Student’s t-tests using Microsoft Excel software. Significance between groups was defined as $P \leq 0.05$. Pearson correlations were assessed between all variables and partial correlations were adjusted for age and weight. Analysis was performed using SAS Enterprise Guide 7.12 (SAS Institute Inc., Cary, NC, USA).

Results

Demographic and bioenergetic characteristics of non-human primate subjects

Age, weight, BMI, homeostatic model assessment of insulin resistance (HOMA-IR), fasting blood glucose, fasting blood insulin, glucose area under the curve, and insulin area under the curve for the sub-cohort of animals utilized for this ancillary study are summarized in Table 1. Cross-sectionally, there were no statistically significant differences between groups for any of these characteristics. However, this ancillary study was not adequately powered for between-group differences in these characteristics. In the larger parent study,
body weight was significantly increased in the Western diet group at all time points after 6 months on the diet; these changes were not observed in the Mediterranean diet group (18). Additionally, the parent study found that Western diet resulted in increased body fat, activity, energy expenditure, triglyceride concentrations, insulin resistance, and hepatosteatosis when compared to the Mediterranean diet (18).

Overall energy intake for animals in this ancillary study was not significantly different between the Western or Mediterranean diet groups, both in mean calories consumed ($P = 0.30$) and mean calories consumed per kilogram of body weight ($P = 0.83$) (Supplemental Figure 1).

Representative bioenergetic profiles from a single animal are shown in Figure 1. All bioenergetic measurements of permeabilized muscle fiber respiration and citrate synthase activity for both diet groups are summarized in Supplemental Table 4.

Diet induces bioenergetic changes in permeabilized fibers

Western diet-fed primates exhibited higher oxygen flux across all respirometry measurements in permeabilized fibers when compared to primates fed a Mediterranean diet (Figure 2A). There was significantly higher respiration with FAO, FAO + complex I, complex I + II, max ETS, and ETS Rot sensitive. There were also trends for higher FAO + complex I + II, complex I, and ETS Rot insensitive.

To examine potential mechanisms of action, we measured citrate synthase activity, a marker of mitochondrial content (29,30). Mean CS activities were similar for the Western and Mediterranean diet groups (Figure 2B). This finding was confirmed by performing western blots for VDAC/Porin, a mitochondrial structural protein. Mean VDAC/Porin protein expression relative to GAPDH was similar for the Western and Mediterranean diet groups (Supplemental Figure 3). To examine differences in the relative contributions of
substrates to mitochondrial respiration, we calculated flux control ratios for key respiratory parameters. We found trends for higher FAO FCR (P=0.08) and FAO + complex I FCR (P=0.10) in the Western diet group compared to the Mediterranean diet group. To further examine these differences in FAO capacity, we performed western blots for CPT1, the rate-limiting step in the transport of fatty acids into mitochondria and β-oxidation (Supplemental Figure 3). While there was no significant difference between the two groups, we found a trend for increased expression of CPT1 in the Mediterranean diet group (P = 0.09).

Correlations between permeabilized muscle fiber bioenergetics and insulin sensitivity, glucose, and insulin measurements

Pearson correlations were used to assess relationships between bioenergetic parameters and insulin sensitivity, glucose, and insulin measurements by diet group and are shown in Table 2 (Western diet), Table 3 (Mediterranean diet); relationships with both groups combined are shown in Supplemental Table 5. For correlation analysis, our primary metabolic outcome was insulin sensitivity calculated by HOMA-IR.

Regression plots illustrating the statistically significant relationships with HOMA-IR are shown in Figure 3A-E for both groups combined. HOMA-IR was significantly positively correlated with FAO (Figure 3A), FAO + complex I (Figure 3B), FAO + complex I + II (Figure 3C), FAO max ETS (Figure 3D), and FAO ETS Rot sensitive (Figure 3E). These relationships between measures of FAO and HOMA-IR were strongest in the Western diet group and are shown in Figure 3F-K. HOMA-IR was positively correlated with FAO (Figure 3F), FAO + complex I (Figure 3G), and FAO + complex I + II (Figure 3H), FAO max ETS (Figure 3I), ETS Rot sensitive (Figure 3J), and ETS Rot insensitive (Figure 3K).
Additionally, with both groups combined, fasting blood insulin was positively correlated with FAO + complex I + II (Supplemental Figure 2A) and FAO ETS Rot sensitive (Supplemental Figure 2B). Insulin AUC was positively correlated with FAO + complex I + II (Supplemental Figure 2C). In the Western diet group, fasting blood insulin was positively correlated with FAO + complex I (Supplemental Figure 2D) and FAO + complex I + II (Supplemental Figure 2E). Insulin AUC was significantly positively correlated with FAO (Supplemental Figure 2F), FAO + complex I (Supplemental Figure 2G), and FAO + complex I + II (Supplemental Figure 2H), FAO max ETS (Supplemental Figure 2I), and FAO ETS Rot sensitive (Supplemental Figure 2J).

Discussion

We observed significantly higher respiration both with and without fatty acid oxidation in permeabilized skeletal muscle fibers from animals fed a Western compared to a Mediterranean diet. These changes were independent of citrate synthase activity, a marker of mitochondrial volume or content (29,30), and expression of VDAC/Porin. These data suggest that the increase in respiration with a Western diet is likely not due to differences in mitochondrial content and could be the result of alterations in other factors such as mitochondrial morphology and composition, mitochondrial quality control, or other intracellular interactions. For example, differences in mitochondrial morphology have been linked to differences in respiration: more fragmented mitochondria are associated with nutrient-rich environments and inefficient energy production, whereas elongated mitochondria are associated with periods of starvation and more efficient production of ATP (31).

We also observed a trend for increased FAO and FAO + complex I flux control ratios in the Western diet group. To examine a potential mechanism for this observation, we looked at the expression of CPT1 by Western blot. Interestingly, we found a trend for increased
CPT1 expression in the Mediterranean diet group. For the measurement of FAO, we used a combination of octanoylcarnitine and malate to induce respiration from fatty acid oxidation. This combination bypasses the rate-limiting step of conversion of acyl-CoAs to acylcarnitines by CPT1, as octanoylcarnitine can freely cross the mitochondrial membrane (32). If we had used octanoyl-CoA and carnitine separately as substrates to induce fatty acid oxidation, we may have observed different results. It is important to consider that this study was not able to examine the stimulation of fatty acid oxidation by longer fatty acids such as palmitate, monounsaturated fatty acids such as oleate, or polyunsaturated fatty acids such as linoleic acid. These limitations may account for lower FAO observed in the Mediterranean diet group despite marginally higher CPT1 expression in skeletal muscle. Indeed, muscle has different capacities for the oxidation of various types of fatty acids (33). Notably, other studies have reported that oleate increases both gene and protein expression of CPT1 (34,35) which is consistent with our observation that a Mediterranean diet rich in monounsaturated fats increased expression of CPT1 in skeletal muscle.

Previous studies of mitochondrial bioenergetics have reported that high-fat diets in rodents are associated with increased mitochondrial respiration in response to both fatty acid and carbohydrate substrates, increased mitochondrial biogenesis, and increased mitochondrial content, despite increased insulin resistance (36–39). However, these studies include very high fat diets with 45% to 60% of total calories from fat and are compared to control diets that contain 8-12% of calories from fat. Additionally, the composition of fats in these studies vary. Some studies include flax seed oil and olive oil as sources of fat, while others have lard as the major source. It should be noted that the study presented here does not compare high-fat and low-fat diets. Both the Western and Mediterranean experimental diets contain 31% of calories from fat. Indeed, we matched the experimental diets on protein, carbohydrate, and total fat content. The Western
experimental diet has a larger amount of saturated fat, while the Mediterranean experimental diet has a larger percentage of monounsaturated and polyunsaturated fats. Our results suggest that manipulations of the types of fats consumed can alter mitochondrial bioenergetics, independent of other factors, such as macronutrient composition, energy intake, and obesity.

Previous studies have linked western diets to chronic low-grade inflammation with elevated levels of biomarkers, such as C-reactive protein, interleukins 6 and 18, and fibrinogen (40). In the context of obesity and insulin resistance, increased levels of tumor necrosis factor-α, interleukin 6, and C-reactive protein have also been reported in both animal models and humans (41). Inflammation is associated with increased mitochondrial respiration in brown adipose tissue, adipocytes, and fibroblasts (42–44). Lark et al. have suggested that high-fat diets that increase mitochondrial respiration and partially oxidized lipid metabolites also increase production of reactive oxygen species and H$_2$O$_2$ that could lead to the induction of proinflammatory cascades and prolonged inflammation (41). In the present study, the lower mitochondrial respiration we observed with Mediterranean diet may be linked to reduced reactive oxygen species, with the potential to lower systemic inflammatory burden. This diet is high in n-3 fatty acids and has a lower n-6:n-3 fatty acid ratio, both of these have been associated with anti-inflammatory effects and could play a role in the differences in mitochondrial bioenergetics observed (45,46). Future studies designed to investigate the effects of Western and Mediterranean dietary patterns on inflammation will need to be conducted in order to determine how these relate to differences in mitochondrial metabolism.

We observed strong positive correlations between fatty acid oxidation and HOMA-IR and fasting blood insulin. These results suggest that there is a potential link between increased fatty acid oxidation of octanoylcarnitine and the development of insulin resistance.
Interestingly, we did not observe significant correlations between these parameters when respiration was examined in the absence of octanoylcarnitine. Within group relationships were strongest in the Western diet group and generally not significant in the Mediterranean diet group, perhaps reflecting greater heterogeneity in responses to diet in the Western diet group. However, when both diet groups are combined, similar relationships to the Western diet group persist. Partial correlations controlling for body weight and age suggest that insulin AUC was positively associated with FAO and FAO max ETS capacity in the Western diet group and negatively associated in the Mediterranean diet group, suggesting a complex diet by body weight interaction. In light of these correlations, further studies are necessary to understand the link between fatty acid oxidation and insulin resistance. It should also be noted that we made multiple comparisons in this study, which increases the risk of type I errors and may lead to significant correlations that are false or incorrect. To mitigate these risks, we chose insulin sensitivity calculated by HOMA-IR as our primary metabolic outcome for correlation analysis. If we reduce the significance threshold to $P \leq 0.01$, many of these relationships are still significant including the relationships between measures of fatty acid oxidation and HOMA-IR. Additionally, these results are consistent, not only do measures of fatty acid oxidation significantly and positively correlate with HOMA-IR, but other surrogate measurements of insulin resistance: fasting blood insulin and insulin AUC.

It should be noted that human studies of diabetics and obese individuals have reported reductions in skeletal muscle mitochondrial bioenergetics (12–17). In this study, metabolic perturbations associated with the Western diet may be related to a prediabetic state in humans. A significantly longer study would be required to determine the temporal relationships between bioenergetic changes associated with diet and the development of
overt diabetes. Our results may reflect an early adaptation to insulin resistance which may be followed by bioenergetic decline upon disease progression.

Major strengths of this study include the use of high-resolution mitochondrial respirometric profiling with and without fatty acid substrate, the comparison of whole dietary patterns rather than manipulation of a single macronutrient, and the use of a well-established non-human primate model highly translatable to humans that allowed for tight experimental control that cannot otherwise be achieved. This study utilized similarly aged premenopausal female cynomolgus monkeys, so additional studies would be required to determine the effects of age, sex, and menopause. A major limitation of this study is the absence of a baseline measurement of mitochondrial respiration or a “control” diet. Muscle samples were obtained only after necropsy. Pre-post diet effects would require multiple biopsies and would, therefore, require an experimental design that is different from the parent study utilized here. While baseline differences are less likely in animal studies compared to human trials; the animals were monitored at baseline and assigned to diet groups with stratified randomization that ensured the groups were balanced based on pretreatment characteristics (body weight, body mass index, basal cortisol, and plasma lipid concentrations). The experimental diets were also carefully matched on macronutrient composition (16% protein, 54% carbohydrate, and 31% total fat) and cholesterol so that the only variables were fat composition and the sources of diet components: more animal sources for the Western diet and more plant sources for the Mediterranean diet.

We report that the consumption of a Western diet resulted in higher skeletal muscle mitochondrial respiration when compared to Mediterranean diet and that fatty acid oxidation significantly and positively correlated with insulin resistance, particularly in the Western diet group. While future investigation is warranted, including analysis of
mitochondrial function pre- and post-dietary manipulation, these studies suggest a potential link between high skeletal muscle mitochondrial respiration and the consumption of a Western diet and the development of insulin resistance. Additionally, these results highlight the importance of dietary composition in the study of mitochondrial bioenergetics. We have shown that changes in the types of fat consumed can influence skeletal muscle mitochondrial respiration, independent of other factors, such as macronutrient composition.
Acknowledgments and Author Contributions

J.L.G-A. played a key role in the conceptualization and development of this ancillary study, performed all respirometric analyses of permeabilized muscle fibers, and played a lead role in data analysis and manuscript preparation. Z.G. performed citrate synthase activity analyses. S.E.A. participated in the design of the project, designed the diets in collaboration with the other investigators, supervised the diet laboratory that formulated them, and participated in the monitoring of animal health. M.Z.V. participated in the design of the project and advised on the translation of human to non-human primate diets during the diet development process. K.T.M. collected samples and participated in the monitoring of animal health. T.C.R. participated in the design and conduct of the project, diet development, and supervised the Clinical Chemistry and Endocrinology Laboratory that performed the insulin, glucose, and insulin sensitivity measurements and manuscript preparation. C.A.S. was the PI of the parent study and played a key role in the development of this ancillary study, data analyses, and manuscript preparation. A.J.A.M. was responsible for the development of this study and provided oversight for all mitochondrial assessments, worked directly with the study team to coordinate the experimental plan, and supervised data analyses and manuscript preparation. All authors have read and approved the final manuscript.
References

10. Jørgensen T, Grunnet N, Quistorff B. One-year high fat diet affects muscle-but not

32. Ojuka E, Andrew B, Bezuidenhout N, George S, Maarman G, Madlala HP,

42. Alcalá M, Calderon-Dominguez M, Bustos E, Ramos P, Casals N, Serra D, Viana

Figure 1. Representative traces of high-resolution respirometry of permeabilized skeletal muscle fibers from a single female cynomolgus macaque

(A) High-resolution respirometry of permeabilized fibers with the SUIT protocol with fatty acids.

(B) High-resolution respirometry of permeabilized fibers with the SUIT protocol without the addition of fatty acids.

(Pfi = permeabilized fibers, Oct = octanoylcarnitine, M = malate, D = ADP, c = cytochrome c, P = pyruvate, G = glutamate, S = succinate, U = FCCP, Gp =glycerol-3-phosphate, Rot = rotenone, Ama = antimycin-A)
Permeabilized Fiber Respirometry Measurement
Figure 2. Effects of Western or Mediterranean diet on skeletal muscle bioenergetics of female cynomolgus macaques

(A) High-resolution respirometry of permeabilized muscle fibers. Data are presented as means ± SEM, n = 11. (*different from Mediterranean group, $P \leq 0.10$ and **different from Mediterranean group, $P \leq 0.05$)

(B) Citrate synthase activity. Data are presented as mean ± SEM, n = 11.
Figure 3. Correlations between permeabilized muscle fiber bioenergetics and insulin sensitivity of female cynomolgus macaques

(A-E) Plots of fatty acid oxidation measures versus HOMA-IR for all animals in the study. Pearson correlation (R) and P-values are shown on each plot.

(F-K) Plots of fatty acid oxidation measures versus HOMA-IR for animals in the Western diet group. Pearson correlation (R) and P-values are shown on each plot.
Table 1. Characteristics of female cynomolgus macaques fed either a Western diet or Mediterranean diet at necropsy

<table>
<thead>
<tr>
<th></th>
<th>Western diet</th>
<th>Mediterranean diet</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>12.3 ± 0.2 (11.5 – 13.2)</td>
<td>12.2 ± 0.2 (11.1 – 13.7)</td>
<td>0.75</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>3.65 ± 0.40 (2.59 – 7.10)</td>
<td>3.19 ± 0.33 (2.42 – 5.24)</td>
<td>0.32</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>46.7 ± 3.4 (36.3 – 73.9)</td>
<td>41.3 ± 2.5 (31.7 – 56.4)</td>
<td>0.18</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>13.4 ± 3.2 (1.0 – 34.2)</td>
<td>11.4 ± 2.4 (2.9 – 26.2)</td>
<td>0.62</td>
</tr>
<tr>
<td>Fasting Blood Glucose (mg/dL)</td>
<td>78 ± 3 (61 – 96)</td>
<td>91 ± 7 (64 – 133)</td>
<td>0.12</td>
</tr>
<tr>
<td>Fasting Blood Insulin (mU/L)</td>
<td>66.4 ± 16.7 (6.4 – 175)</td>
<td>48.4 ± 9.5 (16.9 – 117)</td>
<td>0.80</td>
</tr>
<tr>
<td>Glucose AUC (mg · dL⁻¹ · min)</td>
<td>2950 ± 430 (1720 – 6070)</td>
<td>2830 ± 159 (1960 – 3680)</td>
<td>0.84</td>
</tr>
<tr>
<td>Insulin AUC (mU · L⁻¹ · min)</td>
<td>6820 ± 2450 (1480 – 28900)</td>
<td>4520 ± 1540 (1060 – 18700)</td>
<td>0.43</td>
</tr>
</tbody>
</table>

¹Values are presented as mean ± SEM (range), n = 11 per group. Differences between groups were evaluated by unpaired two-tailed Student’s t-tests and P-values are shown. Glucose and insulin measurements were obtained from plasma samples.
Table 2. Correlations between carbohydrate metabolism phenotypes and respirometry of permeabilized muscle fibers of female cynomolgus macaques fed a Western diet

<table>
<thead>
<tr>
<th>Western diet</th>
<th>FAO</th>
<th>FAO + Complex I</th>
<th>FAO + Complex I + II</th>
<th>FAO Max ETS Capacity</th>
<th>FAO ETS Rot Sensitive</th>
<th>FAO ETS Rot Insensitive</th>
<th>Complex I</th>
<th>Complex I + II</th>
<th>Max ETS Capacity</th>
<th>ETS Rot Sensitive</th>
<th>ETS Rot Insensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.77***</td>
<td>0.86***</td>
<td>0.84**</td>
<td>0.77**</td>
<td>0.74*</td>
<td>0.75**</td>
<td>0.30</td>
<td>0.19</td>
<td>0.32</td>
<td>0.41</td>
<td>-0.01</td>
</tr>
<tr>
<td>Fasting Blood Glucose</td>
<td>0.20</td>
<td>0.18</td>
<td>0.11</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.46</td>
<td>0.38</td>
<td>0.53</td>
<td>0.50</td>
<td>0.42</td>
</tr>
<tr>
<td>Fasting Blood Insulin</td>
<td>0.57</td>
<td>0.63*</td>
<td>0.63*</td>
<td>0.58</td>
<td>0.58</td>
<td>0.60</td>
<td>0.30</td>
<td>0.15</td>
<td>0.37</td>
<td>0.47</td>
<td>0.02</td>
</tr>
<tr>
<td>Glucose AUC</td>
<td>0.25</td>
<td>0.18</td>
<td>0.11</td>
<td>0.09</td>
<td>0.11</td>
<td>0.03</td>
<td>-0.36</td>
<td>-0.15</td>
<td>0.00</td>
<td>0.03</td>
<td>-0.09</td>
</tr>
<tr>
<td>Insulin AUC</td>
<td>0.64*</td>
<td>0.68*</td>
<td>0.65*</td>
<td>0.66*</td>
<td>0.66*</td>
<td>0.59</td>
<td>-0.17</td>
<td>-0.03</td>
<td>-0.10</td>
<td>-0.05</td>
<td>-0.17</td>
</tr>
<tr>
<td>Partial for Age + Weight</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.81**</td>
<td>0.90**</td>
<td>0.88**</td>
<td>0.81*</td>
<td>0.73*</td>
<td>0.82**</td>
<td>0.30</td>
<td>0.18</td>
<td>0.47</td>
<td>0.62</td>
<td>-0.01</td>
</tr>
<tr>
<td>Fasting Blood Glucose</td>
<td>0.09</td>
<td>0.11</td>
<td>0.00</td>
<td>-0.05</td>
<td>-0.11</td>
<td>0.03</td>
<td>0.48</td>
<td>0.36</td>
<td>0.70</td>
<td>0.71</td>
<td>0.46</td>
</tr>
<tr>
<td>Fasting Blood Insulin</td>
<td>0.66</td>
<td>0.88</td>
<td>0.66</td>
<td>0.62</td>
<td>0.56</td>
<td>0.65</td>
<td>0.27</td>
<td>0.15</td>
<td>0.53</td>
<td>0.69</td>
<td>0.01</td>
</tr>
<tr>
<td>Glucose AUC</td>
<td>0.03</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.00</td>
<td>0.16</td>
<td>-0.08</td>
<td>0.02</td>
<td>-0.02</td>
<td>0.34</td>
<td>0.42</td>
<td>0.07</td>
</tr>
<tr>
<td>Insulin AUC</td>
<td>0.86**</td>
<td>0.83**</td>
<td>0.85**</td>
<td>0.88**</td>
<td>0.92***</td>
<td>0.78**</td>
<td>0.51</td>
<td>0.60</td>
<td>0.71</td>
<td>0.26</td>
<td>-0.12</td>
</tr>
</tbody>
</table>

*Values are Pearson correlation coefficients (R) for relationships between measures of carbohydrate metabolism and measures of respiration of permeabilized skeletal muscle fibers. Partial correlations were controlled for age and weight at time of necropsy.

* Represents a significant correlation with $P \leq 0.05$

** Represents a significant correlation with $P \leq 0.01$

*** Represents a significant correlation with $P \leq 0.001$
Table 3. Correlations between carbohydrate metabolism phenotypes and respirometry of permeabilized muscle fibers of female cynomolgus macaques fed a Mediterranean diet1

<table>
<thead>
<tr>
<th>Mediterranean diet</th>
<th>FAO</th>
<th>FAO + Complex I</th>
<th>FAO + Complex I + II</th>
<th>FAO Max ETS Capacity</th>
<th>FAO ETS Rot Sensitive</th>
<th>FAO ETS Rot Insensitive</th>
<th>Complex I</th>
<th>Complex I + II</th>
<th>Max ETS Capacity</th>
<th>ETS Rot Sensitive</th>
<th>ETS Rot Insensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>-0.04</td>
<td>0.13</td>
<td>0.06</td>
<td>0.15</td>
<td>-0.25</td>
<td>0.34</td>
<td>-0.33</td>
<td>-0.32</td>
<td>-0.21</td>
<td>0.02</td>
<td>-0.48</td>
</tr>
<tr>
<td>Fasting Blood Glucose</td>
<td>0.44</td>
<td>-0.10</td>
<td>-0.07</td>
<td>0.47</td>
<td>0.41</td>
<td>0.00</td>
<td>-0.11</td>
<td>-0.13</td>
<td>0.03</td>
<td>0.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>Fasting Blood Insulin</td>
<td>-0.26</td>
<td>0.04</td>
<td>-0.03</td>
<td>-0.05</td>
<td>-0.30</td>
<td>0.21</td>
<td>-0.43</td>
<td>-0.36</td>
<td>-0.30</td>
<td>-0.07</td>
<td>-0.54</td>
</tr>
<tr>
<td>Glucose AUC</td>
<td>0.14</td>
<td>-0.09</td>
<td>0.20</td>
<td>0.24</td>
<td>0.04</td>
<td>0.19</td>
<td>-0.14</td>
<td>-0.27</td>
<td>0.01</td>
<td>0.24</td>
<td>-0.36</td>
</tr>
<tr>
<td>Insulin AUC</td>
<td>-0.52</td>
<td>-0.14</td>
<td>-0.12</td>
<td>-0.54</td>
<td>-0.32</td>
<td>-0.14</td>
<td>-0.24</td>
<td>-0.09</td>
<td>-0.38</td>
<td>-0.39</td>
<td>-0.22</td>
</tr>
<tr>
<td>Partial for Age + Weight</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>-0.10</td>
<td>0.07</td>
<td>0.08</td>
<td>0.12</td>
<td>-0.27</td>
<td>0.37</td>
<td>-0.48</td>
<td>-0.43</td>
<td>-0.40</td>
<td>-0.14</td>
<td>-0.65</td>
</tr>
<tr>
<td>Fasting Blood Glucose</td>
<td>0.38</td>
<td>-0.39</td>
<td>-0.09</td>
<td>0.45</td>
<td>0.54</td>
<td>-0.12</td>
<td>-0.36</td>
<td>-0.33</td>
<td>-0.24</td>
<td>-0.11</td>
<td>-0.36</td>
</tr>
<tr>
<td>Fasting Blood Insulin</td>
<td>-0.26</td>
<td>0.09</td>
<td>0.01</td>
<td>-0.05</td>
<td>-0.30</td>
<td>0.29</td>
<td>-0.43</td>
<td>-0.33</td>
<td>-0.39</td>
<td>-0.17</td>
<td>-0.57</td>
</tr>
<tr>
<td>Glucose AUC</td>
<td>0.18</td>
<td>-0.07</td>
<td>0.17</td>
<td>0.31</td>
<td>0.09</td>
<td>0.19</td>
<td>0.03</td>
<td>-0.16</td>
<td>0.22</td>
<td>0.46</td>
<td>-0.29</td>
</tr>
<tr>
<td>Insulin AUC</td>
<td>-0.73*</td>
<td>0.19</td>
<td>-0.30</td>
<td>-0.75*</td>
<td>-0.62</td>
<td>-0.16</td>
<td>0.17</td>
<td>0.43</td>
<td>0.05</td>
<td>-0.01</td>
<td>0.13</td>
</tr>
</tbody>
</table>

1Values are Pearson correlation coefficients (R) for relationships between measures of carbohydrate metabolism and measures of respiration of permeabilized skeletal muscle fibers. Partial correlations were controlled for age and weight at time of necropsy.

* Represents a significant correlation with $P \leq 0.05$
Supplemental Table 1. Composition of Western and Mediterranean experimental diets

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Western diet g/kg</th>
<th>Mediterranean diet g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein, USP</td>
<td>85.0</td>
<td>17.4</td>
</tr>
<tr>
<td>Whey protein – 895</td>
<td>85.0</td>
<td>17.4</td>
</tr>
<tr>
<td>Dried egg white</td>
<td></td>
<td>26.1</td>
</tr>
<tr>
<td>Fishmeal (Menhaden)</td>
<td></td>
<td>26.1</td>
</tr>
<tr>
<td>Walnuts</td>
<td></td>
<td>8.7</td>
</tr>
<tr>
<td>Black bean flour</td>
<td></td>
<td>43.5</td>
</tr>
<tr>
<td>Garbanzo bean flour</td>
<td></td>
<td>17.4</td>
</tr>
<tr>
<td>Wheat flour (all purpose)</td>
<td></td>
<td>243.5</td>
</tr>
<tr>
<td>Dextrin</td>
<td>260.0</td>
<td>96.6</td>
</tr>
<tr>
<td>Sucrose</td>
<td>180.0</td>
<td>34.8</td>
</tr>
<tr>
<td>High fructose corn syrup 55</td>
<td>70.0</td>
<td>130.4</td>
</tr>
<tr>
<td>Cellulose (Alphacel)¹</td>
<td>79.4</td>
<td>94.8</td>
</tr>
<tr>
<td>Lard</td>
<td>41.5</td>
<td>61.7</td>
</tr>
<tr>
<td>Beef tallow</td>
<td>40.0</td>
<td>8.7</td>
</tr>
<tr>
<td>Butter, lightly salted</td>
<td>12.5</td>
<td>8.7</td>
</tr>
<tr>
<td>Corn oil</td>
<td>35.0</td>
<td>10.4</td>
</tr>
<tr>
<td>Flaxseed oil</td>
<td>3.0</td>
<td>1.7</td>
</tr>
<tr>
<td>Dried egg yolk</td>
<td>6.0</td>
<td>14.8</td>
</tr>
<tr>
<td>Crystalline cholesterol</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Complete vitamin mix³ (Teklad 85529)</td>
<td>25.0</td>
<td>21.7</td>
</tr>
<tr>
<td>Mineral mix⁴ (without Ca, P, NaCl)</td>
<td>50.0</td>
<td>43.5</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Calcium phosphate, monobasic</td>
<td>7.5</td>
<td>6.5</td>
</tr>
<tr>
<td>NaCl (table salt)</td>
<td>16.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>Total</td>
</tr>
</tbody>
</table>

¹Total Fiber (% of diet): Western: 7.94, Mediterranean: 12.7
²Caloric density of diets: Western: 3.42 kcal/g, Mediterranean: 2.64 kcal/g
³Vitamin mix composition: Vitamin A palmitate (500,000 IU/g) (1.8 g/kg), vitamin E DL-alpha tocopheryl acetate (2.5 g/kg), inositol (5.0 g/kg), riboflavin (1.0 g/kg), vitamin K MSB complex (2.3 g/kg), p-aminobenzoic acid (5.0 g/kg), niacin (4.5 g/kg), pyridoxine HCl (1.0 g/kg), thiamin (81%) (1.0 g/kg), calcium pantothenate (3.0 g/kg), vitamin B12 (0.1% in mannitol) (1.4 g/kg), biotin (0.02 g/kg), folic acid (0.1 g/kg), vitamin C, ascorbic acid, coated (97.5%) (90.0 g/kg), choline chloride (75.0 g/kg), vitamin D3, cholecalciferol (500,000 IU/g) (0.2 g/kg), dextrose monohydrate (806.3 g/kg)
⁴Mineral mix composition: Potassium carbonate (313.9 g/kg), magnesium sulfate heptahydrate (143.9 g/kg), dried ferrous sulfate (7.9 g/kg), manganese sulfate monohydrate (1.4 g/kg), zinc chloride (0.9 g/kg), cupric sulfate (0.3 g/kg), potassium iodide (0.08 g/kg), chromium acetate hydroxide (0.05 g/kg), sodium fluoride (0.02 g/kg), sodium selenite pentahydrate (0.004 g/kg), dextrin (531.6 g/kg)
Supplemental Table 2. Macronutrient composition of Western and Mediterranean experimental diets

<table>
<thead>
<tr>
<th></th>
<th>Western</th>
<th>Mediterranean</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of Total Calories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Fat</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>% of Total Fats</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated</td>
<td>36</td>
<td>21</td>
</tr>
<tr>
<td>Monounsaturated</td>
<td>36</td>
<td>57</td>
</tr>
<tr>
<td>Polyunsaturated</td>
<td>26</td>
<td>20</td>
</tr>
</tbody>
</table>
Supplemental Table 3. Summary of respiration measurements in each SUIT protocol

<table>
<thead>
<tr>
<th>Respiration Measurement</th>
<th>Description</th>
<th>Measurement recorded after additions of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUIT protocol with fatty acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAO</td>
<td>Respiration mediated by fatty acid oxidation</td>
<td>octanoylcarnitine and malate</td>
</tr>
<tr>
<td>FAO + Complex I</td>
<td>Respiration mediated by fatty acid oxidation and complex I</td>
<td>octanoylcarnitine, malate, pyruvate, and glutamate</td>
</tr>
<tr>
<td>FAO + Complex I + II</td>
<td>Respiration mediated by fatty acid oxidation and complexes I and II</td>
<td>octanoylcarnitine, malate, pyruvate, glutamate, and succinate</td>
</tr>
<tr>
<td>FAO Max ETS Capacity</td>
<td>Maximum electron transport system capacity / maximum respiration</td>
<td>FCCP (titrations until maximum)</td>
</tr>
<tr>
<td>FAO ETS Rot Sensitive</td>
<td>Respiration sensitive to inhibition of complex I by rotenone</td>
<td>obtained by subtracting respiration after rotenone from max ETS capacity</td>
</tr>
<tr>
<td>FAO ETS Rot Insensitive</td>
<td>Respiration insensitive to inhibition of complex I by rotenone</td>
<td>rotenone</td>
</tr>
<tr>
<td>SUIT protocol without fatty acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex I</td>
<td>Respiration mediated by complex I</td>
<td>pyruvate, malate, and glutamate</td>
</tr>
<tr>
<td>Complex I + II</td>
<td>Respiration mediated by complexes I and II</td>
<td>pyruvate, malate, glutamate, and succinate</td>
</tr>
<tr>
<td>Max ETS Capacity</td>
<td>Maximum electron transport system capacity / maximum respiration</td>
<td>FCCP (titrations until maximum)</td>
</tr>
<tr>
<td>ETS Rot Sensitive</td>
<td>Respiration sensitive to inhibition of complex I by rotenone</td>
<td>obtained by subtracting respiration after rotenone from max ETS capacity</td>
</tr>
<tr>
<td>ETS Rot Insensitive</td>
<td>Respiration insensitive to inhibition of complex I by rotenone</td>
<td>rotenone</td>
</tr>
</tbody>
</table>
Supplemental Table 4. Bioenergetic characteristics of female cynomolgus macaques fed either a Western or Mediterranean diet

<table>
<thead>
<tr>
<th>Respirometry of Permeabilized Muscle Fibers</th>
<th>Western Diet Group</th>
<th>Mediterranean Diet Group</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_2) Flux ((\text{pmol} \cdot s^{-1} \cdot \text{mg tissue}^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAO</td>
<td>5.4 ± 0.7 (2.9 – 10.0)</td>
<td>3.5 ± 0.6 (0.9 – 6.8)</td>
<td>0.05*</td>
</tr>
<tr>
<td>FAO + Complex I</td>
<td>14.8 ± 2.2 (8.6 – 31.7)</td>
<td>9.7 ± 1.0 (4.4 – 15.5)</td>
<td>0.05*</td>
</tr>
<tr>
<td>FAO + Complex I + Complex II</td>
<td>18.0 ± 2.2 (10.2 – 32.2)</td>
<td>13.4 ± 1.4 (6.6 – 19.8)</td>
<td>0.10</td>
</tr>
<tr>
<td>FAO Max ETS Capacity</td>
<td>20.1 ± 2.3 (11.6 – 34.9)</td>
<td>16.3 ± 1.2 (10.4 – 21.4)</td>
<td>0.16</td>
</tr>
<tr>
<td>FAO ETS Rotenone Sensitive</td>
<td>7.9 ± 1.2 (3.4 – 16.2)</td>
<td>6.0 ± 1.3 (3.2 – 16.4)</td>
<td>0.28</td>
</tr>
<tr>
<td>FAO ETS Rotenone Insensitive</td>
<td>12.2 ± 1.2 (7.6 – 18.7)</td>
<td>10.3 ± 1.1 (5.0 – 15.5)</td>
<td>0.26</td>
</tr>
<tr>
<td>Complex I</td>
<td>11.3 ± 0.9 (7.2 – 16.4)</td>
<td>8.7 ± 0.9 (4.2 – 12.0)</td>
<td>0.06</td>
</tr>
<tr>
<td>Complex I + Complex II</td>
<td>15.1 ± 1.0 (10.0 – 20.5)</td>
<td>11.6 ± 1.1 (5.9 – 15.3)</td>
<td>0.03*</td>
</tr>
<tr>
<td>Max ETS Capacity</td>
<td>23.7 ± 1.8 (16.3 – 33.0)</td>
<td>18.2 ± 1.7 (10.3 – 26.7)</td>
<td>0.03*</td>
</tr>
<tr>
<td>ETS Rotenone Sensitive</td>
<td>16.0 ± 1.4 (9.0 – 34.7)</td>
<td>12.2 ± 1.2 (6.5 – 19.5)</td>
<td>0.05*</td>
</tr>
<tr>
<td>ETS Rotenone Insensitive</td>
<td>7.7 ± 0.5 (4.4 – 11.5)</td>
<td>6.0 ± 0.8 (2.6 – 9.4)</td>
<td>0.08</td>
</tr>
<tr>
<td>Citrate Synthase Activity ((\mu\text{mol} \cdot \text{min}^{-1} \cdot \text{mg protein}^{-1}))</td>
<td>1.11 ± 0.10 (0.72 – 1.84)</td>
<td>0.98 ± 0.09 (0.46 – 1.47)</td>
<td>0.33</td>
</tr>
</tbody>
</table>

\(^1\)Summary of all measurements obtained from respirometry of permeabilized muscle fibers with and without fatty acids and citrate synthase activity. Values are presented as mean ± SEM (range), \(n = 11 \) per group. Differences between groups were evaluated by unpaired two-tailed Student’s t-tests and \(P \)-values are shown.

* Represents significant difference between groups with \(P \leq 0.05 \).
Supplemental Table 5. Correlations between carbohydrate metabolism phenotypes and respirometry of permeabilized muscle fibers of all female cynomolgus macaques in the study

<table>
<thead>
<tr>
<th></th>
<th>FAO</th>
<th>FAO + Complex I</th>
<th>FAO + Complex I + II</th>
<th>FAO Max ETS Capacity</th>
<th>FAO ETS Rot Sensitive</th>
<th>FAO ETS Rot Insensitive</th>
<th>Complex I</th>
<th>Complex I + II</th>
<th>Max ETS Capacity</th>
<th>ETS Rot Sensitive</th>
<th>ETS Rot Insensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.47*</td>
<td>0.56**</td>
<td>0.59**</td>
<td>0.57**</td>
<td>0.32</td>
<td>0.60**</td>
<td>0.06</td>
<td>0.02</td>
<td>0.14</td>
<td>0.27</td>
<td>-0.18</td>
</tr>
<tr>
<td>Fasting Blood Glucose</td>
<td>0.08</td>
<td>-0.17</td>
<td>-0.13</td>
<td>0.08</td>
<td>0.06</td>
<td>-0.08</td>
<td>-0.06</td>
<td>-0.11</td>
<td>0.03</td>
<td>0.09</td>
<td>-0.11</td>
</tr>
<tr>
<td>Fasting Blood Insulin</td>
<td>0.30</td>
<td>0.40</td>
<td>0.44*</td>
<td>0.40</td>
<td>0.23</td>
<td>0.46*</td>
<td>0.03</td>
<td>-0.03</td>
<td>0.13</td>
<td>0.27</td>
<td>-0.19</td>
</tr>
<tr>
<td>Glucose AUC</td>
<td>0.18</td>
<td>0.07</td>
<td>0.10</td>
<td>0.10</td>
<td>0.06</td>
<td>-0.27</td>
<td>-0.18</td>
<td>-0.02</td>
<td>0.06</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>Insulin AUC</td>
<td>0.27</td>
<td>0.41</td>
<td>0.44*</td>
<td>0.29</td>
<td>0.26</td>
<td>0.34</td>
<td>-0.11</td>
<td>-0.12</td>
<td>-0.19</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>Partial for Age + Weight</td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>0.48*</td>
<td>0.58**</td>
<td>0.61**</td>
<td>0.57**</td>
<td>0.27**</td>
<td>0.67**</td>
<td>0.06</td>
<td>-0.01</td>
<td>0.12</td>
<td>0.26</td>
<td>-0.20</td>
</tr>
<tr>
<td>Fasting Blood Glucose</td>
<td>0.12</td>
<td>-0.17</td>
<td>-0.09</td>
<td>0.09</td>
<td>0.11</td>
<td>-0.06</td>
<td>-0.17</td>
<td>-0.05</td>
<td>0.02</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>Fasting Blood Insulin</td>
<td>0.30</td>
<td>0.41</td>
<td>0.44</td>
<td>0.39</td>
<td>0.39</td>
<td>0.50*</td>
<td>0.01</td>
<td>-0.05</td>
<td>0.11</td>
<td>0.25</td>
<td>-0.20</td>
</tr>
<tr>
<td>Glucose AUC</td>
<td>0.11</td>
<td>-0.02</td>
<td>-0.01</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
<td>-0.10</td>
<td>-0.11</td>
<td>0.14</td>
<td>0.25</td>
<td>-0.13</td>
</tr>
<tr>
<td>Insulin AUC</td>
<td>0.26</td>
<td>0.48*</td>
<td>0.48*</td>
<td>0.36</td>
<td>0.36</td>
<td>0.44</td>
<td>0.14</td>
<td>0.20</td>
<td>0.02</td>
<td>0.05</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

*Values are Pearson correlation coefficients (R) for relationships between measures of carbohydrate metabolism and measures of respiration of permeabilized skeletal muscle fibers. Partial correlations were controlled for age and weight at time of necropsy.

* Represents significant correlation with $P \leq 0.05$

** Represents significant correlation with $P \leq 0.01$
Supplemental Figure 1. Mean energy intake of female cynomolgus macaques fed either a Western or Mediterranean diet for 30 months

(A) Mean calories consumed per day by diet group. Data are presented as means ± SEM, $n = 11$.

(B) Mean calories consumed per kilogram of body weight per day by diet group. Data are presented as means ± SEM, $n = 11$.
Supplemental Figure 2. Flux control ratios and Western blot analysis of skeletal muscle from female cynomolgus macaques fed a Western or Mediterranean diet

(A) Flux control ratios (FCRs) of high-resolution respirometry of permeabilized skeletal muscle fibers. FCRs were calculated by dividing each respiration parameter by maximum respiration to examine differences in relative contributions of substrates to mitochondrial respiration. Data are presented as means ± SEM, n = 11.

(B) Protein expression of VDAC/Porin in skeletal muscle tissue homogenate from cynomolgus macaques fed either a Western or Mediterranean diet. Data are presented as means ± SEM, n = 11.

(C) Protein expression of CPT1 in skeletal muscle tissue homogenate from cynomolgus macaques fed either a Western or Mediterranean diet. Data are presented as means ± SEM, n = 11.
Supplemental Figure 3. Correlations between female cynomolgus macaque permeabilized muscle fiber bioenergetics and fasting blood insulin and insulin area under the curve

(A-B) Plots of fatty acid oxidation measures versus fasting blood insulin for all animals in the study. Pearson correlation (R) and P-values are shown on each plot.

(C) Plot of FAO + Complex I + II respiration versus insulin area under the curve for all animals in the study. Pearson correlation (R) and P-value are shown on the plot.

(D-E) Plots of fatty acid oxidation measures versus fasting blood insulin for animals in the Western diet group. Pearson correlation (R) and P-values are shown on each plot.

(F-J) Plots of fatty acid oxidation measures versus insulin area under the curve for animals in the Western diet group. Pearson correlation (R) and P-values are shown on each plot.
CHAPTER THREE:

HETEROCHRONIC PARABIOSIS: OLD BLOOD INDUCES CHANGES IN MITOCHONDRIAL STRUCTURE AND FUNCTION OF YOUNG MICE

Jenny L. Gonzalez-Armenta, Ning Li, Rae-Ling Lee, Baisong Lu, and Anthony J.A. Molina

This manuscript was published in the Journals of Gerontology, Series A: Biological Sciences and Medical Sciences.

doi: 10.1093/gerona/glaa299

First published online: December 30, 2020

Stylistic variations are due to the requirements of the journal.

Jenny L. Gonzalez-Armenta performed experiments, analyzed data, and prepared the manuscript.
Heterochronic Parabiosis: Old Blood Induces Changes in Mitochondrial Structure and Function of Young Mice

Jenny L. Gonzalez-Armenta, BS, Ning Li, MD, Rae-Ling Lee, BS, Baisong Lu, PhD
Anthony J.A. Molina, PhD*

1Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC.

2Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC.

3J Paul Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, NC.

4Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

5Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC.

6Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA.

*Corresponding author: Anthony J.A. Molina

University of California San Diego School of Medicine

Division of Geriatrics and Gerontology

Department of Medicine
9500 Gilman Drive, MC 0665

La Jolla, CA 92093-0665

858-246-5930

Main text word count: 2881

Number of data elements: 3
Abstract

Heterochronic parabiosis models have been utilized to demonstrate the role of blood-borne circulating factors in systemic effects of aging. In previous studies, heterochronic parabiosis has shown positive effects across multiple tissues in old mice. More recently, a study demonstrated old blood had a more profound negative effect on muscle performance and neurogenesis of young mice. In this study, we used heterochronic parabiosis to test the hypothesis that circulating factors mediate mitochondrial bioenergetic decline, a well-established biological hallmark of aging. We examined mitochondrial morphology, expression of mitochondrial complexes, and mitochondrial respiration from skeletal muscle of mice connected as heterochronic pairs, as well as young and old isochronic controls. Our results indicate that young heterochronic mice had significantly lower total mitochondrial content and on average had significantly smaller mitochondria compared to young isochronic controls. Expression of complex IV followed a similar pattern: young heterochronic mice had a trend for lower expression compared to young isochronic controls. Additionally, respirometric analyses indicate that young heterochronic mice had significantly lower complex I, complex I + II, and maximal mitochondrial respiration and a trend for lower complex II driven respiration compared to young isochronic controls. Interestingly, we did not observe significant improvements in old heterochronic mice compared to old isochronic controls, demonstrating the profound deleterious effects of circulating factors from old mice on mitochondrial structure and function. We also found no significant differences between the young and old heterochronic mice, demonstrating that circulating factors can be a driver of age-related differences in mitochondrial structure and function.

Keywords: heterochronic parabiosis, mitochondria, mouse model, aging
Introduction

Mitochondrial bioenergetic decline is a hallmark of the aging process. Studies have reported reduced mitochondrial respiratory capacity in older adults, as indicated by reduced phosphocreatine recovery time and reduced mitochondrial respiration in skeletal muscle (1,2). Multiple studies have shown decreased mitochondrial enzyme activities in skeletal muscle, liver, and heart with increasing age, including: succinate dehydrogenase, citrate synthase, cytochrome c oxidase, and β-hydroxyacyl-CoA dehydrogenase (1,3,4). Reduced mitochondrial DNA copy number and increased number of mitochondrial DNA mutations in these tissues have been associated with age in both animal models and human subjects (4–7). Additionally, reduced mitochondrial content and alterations in mitochondrial dynamics are associated with aging (6). Altogether, these studies indicate that mitochondrial changes are systemic and therefore apparent in multiple tissues, including brain, heart, skeletal muscle, and liver (4,8). Yet, little is known about what may mediate the systemic nature of age-related bioenergetic decline.

Heterochronic parabiosis is a surgical technique that involves connecting two mice, in this case one old and one young, so that the circulatory systems of the mice become connected to study the systemic effects of aging. Using parabiosis, researchers have demonstrated that circulating factors in blood play a major role in many age-related processes that occur across a variety of tissues. Heterochronic parabiosis in mice has been reported to have positive effects on muscle, liver, brain, and other tissues for the older parabiont (9–14). Recently, it has been shown that old blood has a greater negative effect on young mice and resulted in decreased muscle performance and neurogenesis (10). While it is apparent that heterochronic parabiosis has the potential to modulate function at the cell and tissue level, the effects of circulating factors on mitochondrial bioenergetics have not been examined.
In this study, we used the heterochronic parabiosis model to test the hypothesis that circulating factors present in blood mediate age-related bioenergetic decline in skeletal muscle. We examined mitochondrial content, expression of mitochondrial electron transport chain complexes, and performed high-resolution respirometry of permeabilized skeletal muscle fibers in pairs of heterochronic and isochronic parabionts. To our knowledge, this study is the first to provide direct evidence that circulating factors alone can mediate age-related changes in mitochondrial structure and function.

Materials and Methods

Heterochronic parabiosis

C57BL/6 young (2 months) and old (18-20 months) female mice were connected as old isochronic controls, young isochronic controls, and heterochronic experimental pairs. Parabiosis surgeries were completed as previously described (15).

All muscle tissues were collected from the free-moving hindlimb opposite of the parabiosis surgery to eliminate any effects of partial immobilization potentially caused by the surgery. For western blot analysis, mice were connected for 35 days before experiments were performed. These mice included 10 old controls (5 pairs), 12 young controls (6 pairs) and 11 young and 11 old heterochronic mice (11 pairs). For high-resolution respirometry analysis, mice were connected for an average of 50 days (range: 40-53 days) before experiments were performed. These experiments included 2 old isochronic controls (1 pair), 4 young isochronic controls (2 pairs), and 6 young and 6 old heterochronic experimental mice (6 pairs). For electron microscopy, mice were connected for an average of 50 days (range: 40-53 days) before experiments were performed and included 2 old isochronic controls (1 pair), 2 young isochronic controls (1 pair), and 2 young and 2 old heterochronic experimental mice (2 pairs). All
procedures and protocols were approved by the Wake Forest School of Medicine Animal Care and Use Committee.

Electron microscopy for mitochondrial morphology

Muscle samples were obtained from a subset of mice and the deep or red _gastrocnemius_ of 2 old isochronic controls, 2 young isochronic controls, and 4 heterochronic experimental mice were collected. The tissue was fixed with 2.5% glutaraldehyde in 0.1M Millonig’s phosphate buffer (pH 7.3) for a minimum of one hour. Subsequently, the samples were washed 3x in buffer and post-fixed with 1% osmium tetroxide in phosphate buffer for one hour. The samples were washed 3x in buffer, then dehydrated through a graded series of ethanol for 10 minutes each. For preparation of resin infiltration, the samples were incubated in propylene oxide 2x for 15 minutes each. Finally, the samples were gradually infiltrated with 1:1, 1:2, and pure solutions of Spurr’s resin and allowed to cure in a 70°C oven overnight. 90 nm longitudinal sections were obtained with a Reichert-Jung Ultracut E ultramicrotome, stained with lead citrate and uranyl acetate, and viewed with a FEI Tecnai Spirit TEM operating at 80 kV. Ten images from each sample were obtained with an AMT 2Vu CCD camera. Mitochondrial morphology parameters (total mitochondrial area, average mitochondrial area, and average mitochondrial length) were measured using ImageJ (National Institutes of Health).

Western blotting

Skeletal muscle samples (_Quadriceps femoris_) were obtained from 10 old isochronic controls, 12 young isochronic controls, and 22 heterochronic experimental mice. Whole tissue homogenate was loaded at a concentration of 20 μg total protein per well for separation by SDS-PAGE and transferred to polyvinylidene difluoride membranes. The membranes were blocked at room temperature for 1 h in 5% nonfat dry milk in tris-buffered saline containing 0.1%
Tween-20. Blots were probed overnight at 4°C with primary antibodies (VDAC/Porin, Abcam, ab14734; GAPDH, Abcam, ab9484; Total OXPHOS Rodent WB Antibody Cocktail, Abcam, ab110413) and incubated with the appropriate HRP-conjugated anti-IgG antibody. Antibody-bound protein was detected by enhanced chemiluminescence and quantified by densitometry with ImageJ (National Institutes of Health). GAPDH was used as a loading control for whole tissue homogenate and VDAC/Porin was used to control for differences in mitochondrial content.

Preparation of permeabilized skeletal muscle fibers for respirometry

Immediately after animals were euthanized, skeletal muscle tissue (soleus) was removed from 2 old isochronic controls, 4 young isochronic controls, and 12 heterochronic experimental mice. Skeletal muscle fibers for high-resolution respirometry were prepared as described previously (16). Briefly, the tissue was placed in ice-cold BIOPS (10 mM Ca-EGTA buffer, 0.1 µM free calcium, 20 mM imidazole, 20 mM taurine, 50 mM potassium morpholineethanesulfonic acid, 0.5 mM DTT, 6.56 mM MgCl₂, 5.77 mM ATP, 15 mM phosphocreatine, pH 7.1). Any remaining tendon was removed and the tissue fibers were separated mechanically with sharp angular forceps under magnification, permeabilized with saponin (30 mg/mL) for 30 min on ice, and washed with buffer Z (105 mM K-MES, 30 mM KCl, 1 mM EGTA, 10 mM K₂HPO₄, 5 mM MgCl₂·6H₂O, 0.5 mg/mL BSA, pH 7.4) for 15 min on ice before analysis.

High-resolution respirometry of permeabilized skeletal muscle fibers

Approximately 0.5-0.9 mg of tissue was added to each chamber and steady-state rate of respiration measurements were obtained after every substrate addition and expressed as picomoles per second per milligram of tissue. Each sample was run in duplicate. High-resolution oxygen flux measurements were measured in 2 mL buffer Z containing 20 mM creatine and 25
μM blebbistatin to inhibit contraction (17). This injection protocol was completed as follows: 2 mM malate, 4 mM ADP, 5 mM pyruvate, 10 mM glutamate, 10 mM succinate, 10 μM cytochrome c to test for mitochondrial membrane integrity, 2 additions of 0.25 μM FCCP followed by a titration of 0.5 μM FCCP to obtain maximal ETS capacity, 0.5 μM rotenone, and 5 μM antimycin-A. Respiration measurements are summarized in (Supplemental Table 1).

Statistical analysis

For analysis of the electron microscopy and high-resolution respirometry data, normality was assessed by Shapiro-Wilk tests and homogeneity of variance was assessed by Levene’s test before one-way ANOVAs were performed. Significant ANOVA results were followed by a posthoc analysis to determine which groups were statistically different using Tukey’s studentized range test. Significance between groups was defined as p < 0.05. All analysis was performed using SAS Enterprise Guide version 7.12 (SAS Institute Inc.).

Results

Old blood induces changes in skeletal muscle mitochondrial morphology

To characterize the effects of heterochronic parabiosis on skeletal muscle mitochondrial structure, we examined overall mitochondrial morphology using electron microscopy. Representative images from each experimental group are shown in Figure 1A. We measured the total mitochondrial area (Figure 1B), average mitochondrial area (Figure 1C), and average length of mitochondria (Figure 1D) in each image field. Our results indicate that young heterochronic mice had significantly lower total mitochondrial area, and significantly lower average mitochondrial area compared to young isochronic controls. We did not observe any significant differences between young heterochronic mice and old heterochronic mice.
Additionally, there were no significant improvement in old heterochronic mice compared to old isochronic controls.

Old blood induces changes in complex IV expression in skeletal muscle

We performed western blots to examine the expression of proteins that are representative of mitochondrial electron transport system complexes in skeletal muscle (Figure 2). We found that VDAC/porin expression was higher in the young isochronic controls compared to old isochronic controls. While not significant, these suggest differences in mitochondrial content. Therefore, we controlled for these differences in mitochondrial content mathematically when comparing differences in mitochondrial complex expression. Our results indicate that the expression of complex IV had a similar pattern as the electron microscopy data: young heterochronic mice had an overall trend for lower expression of complex IV than young isochronic controls, there was no difference between young and old heterochronic mice, and we did not observe a significant improvement in complex IV expression in old heterochronic mice when compared to old isochronic controls.

Old blood induces changes in mitochondrial respiration in permeabilized fibers

Young heterochronic mice exhibited lower oxygen flux across all respirometry measurements in permeabilized fibers when compared to young isochronic controls (Figure 3). Young heterochronic mice had statistically significantly lower mitochondrial respiration with complex I, complex I + II, and max ETS and a trend for lower complex II respiration when compared to young isochronic controls. We did not observe any significant differences in mitochondrial respiration with complex I, complex I + II, max ETS, and complex II between the young and old heterochronic mice groups. Again, we did observe significant improvements in mitochondrial
Discussion

Our results from isochronic parabiosis controls are consistent with previous research that examined mitochondrial morphology, mitochondrial enzyme expression, and mitochondrial respiration across animals of different ages. We found reduced total mitochondrial area, reduced average mitochondrial area, and decreased mitochondrial length in the muscle of older animals compared to young animals. Others have reported similar differences in young and old, non-parabiosis, animals with regard to mitochondrial content reported by electron microscopy (6) and by surrogate measures such as citrate synthase activity (1,3). Moreover, older adults have been reported to have smaller, more fragmented mitochondria accompanied by reduced expression of markers of mitochondrial biogenesis and increased expression of markers of mitochondrial fission (18). We found reduced expression of complex IV in skeletal muscle of the old isochronic controls when compared to the young isochronic controls. Our results are consistent with the decrease in expression of complex IV in skeletal muscle in older individuals that have been reported previously (3,4). Other studies have also reported decreased expression of complex I as well as decreased activities of mitochondrial enzymes, such as: succinate dehydrogenase (complex II), citrate synthase, and cytochrome c oxidase (complex IV) with increasing age (3,4,18,19). We also observed decreased mitochondrial respiration in skeletal muscle from old isochronic controls when compared to young isochronic controls. This observation is consistent with previous studies that found decreased mitochondrial function as measured by both phosphocreatine recovery time and skeletal muscle mitochondrial respiration in older individuals (1,2,20–23). Overall, these studies indicate that the effects of age on mitochondrial structure and function are preserved in our isochronic parabiosis controls.
Our results provide striking evidence of the negative impact of circulating factors in old blood on mitochondrial structure and function. Young heterochronic mice had significantly lower total mitochondrial area, significantly lower average mitochondrial area, and a trend for lower average mitochondrial length in skeletal muscle when compared to young isochronic controls. We found a trend for reduced expression of complex IV in young heterochronic mice when compared to young isochronic controls. We also found significantly reduced mitochondrial respiration with complex I, complex I + II, and max ETS and a trend for lower complex II respiration in young heterochronic mice when compared to young isochronic controls. These mitochondrial alterations may underlie age-related differences in muscle function. Other labs have reported that young heterochronic mice exhibit decreased muscle performance, but no differences in muscle regeneration or fibrosis after muscle injury compared to young isochronic controls (10,24). Notably, lower skeletal muscle mitochondrial respiration has been associated with lower physical function as measured by muscle strength and gait speed (22). Taken together, these results suggest that altered mitochondrial structure and function is not only a major aspect of age-related decline in skeletal muscle, but that circulating factors can mediate these changes. Furthermore, circulating factors may play a role in the link between mitochondrial respiration and physical function.

We did not observe statistically significant increases in mitochondrial area or length, complex IV expression, or mitochondrial respiration in old heterochronic mice when compared to old isochronic controls. Other labs have reported that old heterochronic mice exhibit improved muscle regeneration and reduced fibrosis after muscle injury, but no differences in muscle performance when compared to old isochronic controls (10,24). Taken together, these results suggest that there is a greater negative impact of circulating factors in old blood on mitochondrial structure and function than can be restored by factors in young blood. Another potential explanation for this observation is that intrinsic properties of muscle from older animals
may make these cells resistant to potential benefits of factors found in young blood. It should also be noted that there were a limited number of old isochronic controls and this may have limited our ability to detect differences between these groups.

It is notable that we did not observe any differences in mitochondrial morphology, complex IV expression, or mitochondrial respiration between young heterochronic or old heterochronic mice. When the circulating factors between young and old are mixed by heterochronic parabiosis, mitochondrial structure and function are similar between the parabiosed animals. Other labs have reported a similar responses in heterochronic mice with muscle regeneration and muscle performance (10,24). These results provide a striking demonstration that circulating factors can be a primary driver of mitochondrial structure and function. Completed studies have examined circulating factors as mediators of age-related differences. Some of these have also proposed specific proteins and metabolites that can impact mitochondrial function. For example, previous work from our lab has found that increased levels of IL-6 was associated with lower mitochondrial respiration in older adults (25). Additionally, other studies have also found that alterations in levels of IL-6 (26,27), BCAAs (28,29), and lipid metabolites (30,31) are associated with changes in mitochondrial function.

To our knowledge, this is the first study to examine the effects of age-associated circulating factors on mitochondrial structure and function using the heterochronic parabiosis model. While this study is limited in size, the results are striking and supported by the use of multiple complementary approaches to examine mitochondrial structure and function, including electron microscopy and high-resolution mitochondrial respirometric profiling to examine changes induced by circulating factors.

This study used multiple muscles for analyses: gastrocnemius for electron microscopy, quadriceps femoris for western blotting, and soleus for high-resolution respirometry. This
approach ensured that adequate sample was available for each of our assays. Since we were primarily interested in mitochondrial changes, we chose muscles that were rich in type I muscle fibers that are rich in mitochondria and are highly oxidative (32). A benefit of this approach is that it gives a broader understanding of the mitochondrial changes across muscle tissues; however, there may be region specific effects that we are unable to appreciate. Future studies can include additional tissues for examination to determine if this is muscle-specific or is true across multiple tissue types. A potential limitation of this study is that the tissues were collected from two sets of parabiosis mice and there was variability in time that the animals were connected before analysis. A larger set of experiments would be needed in order to establish if there is a time course to the mitochondrial effects of heterochronic parabiosis. Moreover, this study only included female mice and therefore additional studies would be required to examine the effects of sex on these age-related changes in mitochondria. While equal numbers of parabiosis pairs were surgically created at the beginning of the study, attrition across groups led to a limited sample size, especially for the mitochondrial respiration controls and electron microscopy. This small sample size we were left with upon completion of the study may limit our ability to detect smaller changes. Additionally, the old isochronic controls in the mitochondrial respiration and electron microscopy experiments were from 2 animals from the same parabiosis pair; thus, these may not truly represent independent biological replicates. Outcomes that showed statistical trends for differences in this study can be further examined in future investigations.

The overall impact of this study stems from the finding that circulating factors can mediate alterations in mitochondrial structure and function associated with aging. Additionally, our results demonstrating that the heterochronic pairing of animals leads to similar mitochondrial structure and function between young and old parabionts suggest that circulating factors may be sufficient to mediate age-related bioenergetic differences in skeletal muscle metabolism. These
results support a growing body of evidence that circulating factors are not only potential biomarkers of aging, but may underlie hallmarks of the aging process. These results will support future studies to identify circulating factors mediating age-related bioenergetic decline and their mechanisms of action.

Funding

This work was supported by R56 AG057864 (PI: Molina) and by a training grant awarded to JGA (T32 HL091797, PI: Parks).

Acknowledgments and Author Contributions

The authors would like to thank Ken Grant and the Cellular Imaging Shared Resource at Wake Forest School of Medicine for their assistance with electron microscopy.

J.L.G-A. played a key role in the conceptualization and development of this study, performed all experiments, and played a lead role in data analysis and manuscript preparation. N.L. performed all parabiosis surgeries. R-L.L. completed analysis of electron microscopy images. B.L. played a key role in the development of this study, provided the animal model, and supervised the parabiosis surgeries. A.J.A.M. provided oversight for the study and was responsible for its design and development, supervised the work performed by J.L.G-A., provided all of the equipment and reagents for mitochondrial assessments, and worked closely with J.L.G-A. on data analyses and manuscript preparation. All authors have read and approved the final manuscript.
Conflicts of Interest

The authors declare no conflicts of interest.
References

Figure 1. Electron microscopy of skeletal muscle from heterochronic parabiosis mice

A) Representative electron microscopy images from young isochronic controls, young mice from heterochronic pairs, old mice from heterochronic pairs, and old isochronic controls.

B) Total mitochondrial area in electron microscopy field. Data are presented as means ± SEM. (*, p <0.05)

C) Average mitochondrial area in electron microscopy field. Data are presented as means ± SEM. (*, p <0.05)

D) Average mitochondrial length in electron microscopy field. Data are presented as means ± SEM. (*, p <0.05)
A

Y Y Y O O O
Cl
CII
CIII
CIV
CV
VDAC/Porin
GAPDH

B

VDAC/Porin Relative Expression (normalized to GAPDH)

Experimental Group

Young Iso
Young Het
Old Het
Old Iso

C

Mitochondrial ETS Complex

CI
CII
CIII
CIV
CV

Mito Complex Relative Expression (normalized to VDAC/Porin)

#
Figure 2. Western blot analysis of skeletal muscle from heterochronic parabiosis mice

A) Representative western blots of mitochondrial complexes in skeletal muscle tissue homogenate images from young isochronic controls, young mice from heterochronic pairs, old mice from heterochronic pairs, and old isochronic controls.

B) Relative protein expression of VDAC/Porin in skeletal muscle tissue homogenate from young isochronic controls, young mice from heterochronic pairs, old mice from heterochronic pairs, and old isochronic controls. Data are presented as means ± SEM. (#, p < 0.10)

C) Relative protein expression of mitochondrial complexes in skeletal muscle tissue homogenate from young isochronic controls, young mice from heterochronic pairs, old mice from heterochronic pairs, and old isochronic controls. Data are presented as means ± SEM. (#, p < 0.10)
Figure 3. High-resolution respirometry of skeletal muscle from heterochronic parabiosis mice

A) Representative trace of high-resolution respirometry of permeabilized soleus fibers with a SUIT protocol. (Pfi = permeabilized fibers, M = malate D = ADP, P = pyruvate, G = glutamate, S = succinate, c = cytochrome c, U = FCCP, Rot = rotenone, Ama = antimycin-A)

B) High-resolution respirometry of permeabilized skeletal muscle fibers. Data are presented as means ± SEM. (*, p <0.05 and #, p < 0.10)
Supplemental Table 1. Summary of respiration measurements

<table>
<thead>
<tr>
<th>Respiration Measurement</th>
<th>Description</th>
<th>Measurement recorded after additions of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex I</td>
<td>Respiration mediated by complex I</td>
<td>pyruvate, malate, and glutamate</td>
</tr>
<tr>
<td>Complex I + II</td>
<td>Respiration mediated by complexes I and II</td>
<td>pyruvate, malate, glutamate, and succinate</td>
</tr>
<tr>
<td>Max ETS Capacity</td>
<td>Maximum electron transport system capacity / maximum respiration</td>
<td>FCCP (titrations until maximum)</td>
</tr>
<tr>
<td>Complex II</td>
<td>Respiration mediated by complex II, also referred to as rotenone sensitive respiration</td>
<td>obtained by subtracting respiration after rotenone from max ETS capacity</td>
</tr>
</tbody>
</table>
CHAPTER FOUR: SERUM FACTORS MEDIATE THE BIOENERGETIC CHANGES OF DIET AND EXERCISE INTERVENTIONS

Jenny L. Gonzalez-Armenta, Jaclyn Bergstrom, Jingyun Lee, Cristina Furdui, John Stone, Barbara J. Nicklas, and Anthony J.A. Molina

This manuscript has been prepared for submission to Cell Metabolism. Stylistic variations are due to the requirements of the journal. Jenny L. Gonzalez-Armenta performed experiments, analyzed data, and prepared the manuscript.
Serum factors mediate the bioenergetic changes of diet and exercise interventions

Jenny L. Gonzalez-Armenta,1,2,3 Jaclyn Bergstrom,4 Jingyun Lee,5 Cristina M. Furdui,1 John Stone,2,3 Barbara J. Nicklas,2,3 Anthony J.A. Molina6,*

1Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC.
2Section on Gerontology and Geriatrics, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC.
3J Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC.
4Division of Epidemiology, Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, CA.
5Proteomics and Metabolomics Shared Resource, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC.
6Division of Geriatrics and Gerontology, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA.

*Corresponding author: Anthony J.A. Molina
University of California San Diego School of Medicine

Division of Geriatrics and Gerontology
Department of Medicine
9500 Gilman Drive, MC 0665
La Jolla, CA 92093-0665
858-246-5930
ajmolina@health.ucsd.edu
Summary

Age-related bioenergetic decline, and the corresponding bioenergetic improvements with interventions, are systemic, suggesting a potential role for blood-borne circulating factors. To determine whether circulating factors can modulate mitochondrial function, we used serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT+CR) to examine the effects on myoblasts in vitro. We report that serum exposure is sufficient to mediate the bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetics can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified and tested potential circulating factors responsible for mediating changes in mitochondrial bioenergetics. Specifically, we identified 3-hydroxy-3-methylglutarate and α-hydroxisobutyrate as potent mediators of mitochondrial function and potential therapeutic targets. This study builds upon a growing body of evidence that circulating factors are not only important in aging, but in interventions to improve healthspan as well.

Keywords: mitochondria, bioenergetics, resistance training, caloric restriction, older adults, metabolomics
Introduction

Mitochondrial dysfunction is a hallmark of aging (López-Otín et al., 2013), and is characterized by reduced respiratory capacity, decreased mitochondrial enzyme activities, decreased mtDNA copy number, increased mtDNA mutations, increased ROS production, decreased mitochondrial content, and decreased mitochondrial dynamics (Barazzoni et al., 2000; Coggan et al., 1990; Conley et al., 2000; Johannsen et al., 2012; Melov et al., 1995; Petersen et al., 2003; Rooyackers et al., 1996; Short et al., 2005; Srivastava, 2017; Tonkonogi et al., 2003). Thus far, diet and exercise are some of the most promising interventions to improve healthspan and ameliorate many of the hallmarks of aging, including mitochondrial dysfunction (Barbosa de Queiroz et al., 2017; Drake et al., 2016; Garatachea et al., 2015; Hyatt et al., 2016; Lanza and Nair, 2009; Menshikova et al., 2006; Toledo and Goodpaster, 2013). In addition, age-related mitochondrial dysfunction and the improvements resulting from diet and exercise interventions have been observed in many tissues, including the brain, heart, skeletal muscle, and liver (Barazzoni et al., 2000; Cerqueira et al., 2016; Desler et al., 2012; Forni et al., 2017; Gusdon et al., 2017).

Studies conducted by our lab and others have utilized blood cells as reporters of systemic mitochondrial function and bioenergetic capacity in human studies (Avila et al., 2012; Braganza et al., 2019; Chou et al., 2019; Japiassú et al., 2011; Kramer et al., 2015; Mahapatra et al., 2018; Nguyen et al., 2017, 2019; Sjövall et al., 2010; Tyrrell et al., 2015a, 2015b, 2016, 2017; Willig et al., 2017). Specifically, our lab has demonstrated that blood cell mitochondrial bioenergetics can recapitulate the bioenergetics of the brain, skeletal muscle, and cardiac muscle and that increased circulating IL-6 is associated with decreased mitochondrial bioenergetic capacity in blood cells (Tyrrell et al., 2015a, 2016, 2017). Taken together, these studies support the premise that blood
cells are exposed to circulating factors that mediate mitochondrial function across multiple tissues, and can therefore be used as reliable reporters of human bioenergetic capacity. Importantly, we recently demonstrated that circulating factors in old blood are sufficient to induce age-related changes in mitochondrial structure and function in skeletal muscle of young mice in a heterochronic parabiosis mouse model (Gonzalez-Armenta et al., 2021). Other groups have also shown that circulating factors play a role in many processes, such as aging and exercise interventions, in a variety of tissues: skeletal muscle, liver, brain, skin, and bone (Baht et al., 2015; Bu et al., 2018; Conboy and Rando, 2012; Loffredo et al., 2013; Rebo et al., 2016; Salpeter et al., 2013; Villeda et al., 2011). These multiple lines of evidence suggest that there is a potential role for blood-borne circulating factors in mediating the age-related decline in mitochondrial function and the corresponding improvements from interventions such as diet and exercise.

In this study, we aimed to determine the effects of serum, collected from older adults, before and after intervention, either resistance training or resistance training plus caloric restriction, on muscle cells in vitro. We also used metabolomics to identify and test potential circulating factors responsible for mediating changes in mitochondrial bioenergetics in response to resistance training and caloric restriction.

Results

Participant demographic and other characteristics at baseline for this ancillary study

Age, number of female participants, number of white individuals, body mass, height, BMI, waist circumference, hip circumference, and waist-to-hip ratio for the subset of participants included in this ancillary study are summarized in Table 1. For this subset of
participants, there were no significant differences between baseline characteristics of the two intervention groups, RT or RT + CR.

Serum-mediated bioenergetics and the effects of intervention

The experimental design and serum-mediated bioenergetics results are summarized in **Figure 1**. The overall effect of intervention on serum-mediated bioenergetics with both intervention groups combined is presented in Figure 1B. Post-intervention serum-mediated bioenergetics were significantly increased compared to pre-intervention serum-mediated bioenergetics as measured by basal, ATP-linked, max, and spare respiratory capacity. The effect of each intervention, RT or RT + CR, on serum-mediated bioenergetics is shown in Figure 1C and the change in OCR from each intervention is shown in Figure 1D. With RT, post-intervention serum-mediated bioenergetics were significantly increased compared to pre-intervention serum-mediated bioenergetics as measured by basal and ATP-linked and there was a trend for increased max respiration. With RT + CR, there were trends for increased post-intervention serum-mediated bioenergetics compared to pre-intervention serum-mediated bioenergetics as measured by max and spare respiratory capacity. The change in max respiration in all participants is shown in Figure 1E, demonstrating the heterogeneity of responses to intervention in terms of serum-mediated bioenergetics. The unadjusted mitochondrial respiration and physical function measurements at baseline and changes with intervention are summarized in **Supplemental Table 1**. The post-intervention mitochondrial respiration and physical function measurement least-square means and adjusted group differences adjusted for age, sex, and baseline value of outcome are also summarized in **Supplemental Table 2**.

Supplemental Figure 1 presents the change in cell count after serum treatment (Supplemental Figure 1A and 1B) and the observed sex differences in these cell counts.
(Supplemental Figure 1C and 1D). Cell proliferation upon overnight incubation with participant serum varied depending on intervention group and sex. In particular, RT and female serum appeared to increase overnight proliferation, though these differences were not statistically significant.

Observed sex differences in serum-mediated bioenergetics are shown in Supplemental Figure 2. Sex differences in OCR pre- and post-intervention are shown for RT and RT + CR in Supplemental Figures 2A and 2B, respectively. Serum from female participants who completed the RT intervention significantly increased post-intervention basal and ATP-linked respiration and had trends for increased maximal respiration and spare respiratory capacity when compared to pre-intervention. Sex differences in change in OCR in response to intervention are shown for RT and RT + CR in Supplemental Figures 2C and 2D, respectively. Serum from female participants who completed the RT + CR intervention had a trend for increased post-intervention basal respiration and significantly increased leak respiration when compared to pre-intervention. There were no statistically significant differences between pre- and post-intervention serum-mediated bioenergetics with serum from male participants from either intervention, RT or RT + CR.

Correlations between change in serum-mediated bioenergetics and change in physical function and inflammatory cytokines

Spearman correlations were used to assess relationships between bioenergetic parameters and physical function and inflammatory cytokines and are shown in Supplemental Table 3 (all participants combined), Supplemental Table 4 (separated by intervention group), and Supplemental Table 5 (separated by sex).
Regression plots illustrating the relationships between change in serum-mediated max respiration and physical function are shown in Figure 2A-E. Change in serum-mediated max respiration was significantly and positively correlated with change in Mat-sf (Figure 2A, R=0.294, p= 0.03), had a trend for a negative correlation with change in 400m walk time (Figure 2B, R=-0.215, p= 0.08), was not significantly associated with change in gait speed (Figure 2C, R=0.180, p= 0.14), was significantly and negatively correlated with change in IL-6 (Figure 2D, R=-0.255, p= 0.04), and had a trend for a negative correlation with change in CRP (Figure 2E, R=-0.224, p= 0.08). Regression plots illustrating the relationships between change in serum-mediated SRC and physical function are shown in Figure 2F-J. Change in serum-mediated SRC was significantly and positively correlated with change in Mat-sf (Figure 2F, R=0.372 , p= 0.004), significantly and negatively correlated with change in 400m walk time (Figure 2G, R=-0.246 , p= 0.04), a trend for a positive correlation with change in gait speed (Figure 2H, R=0.224 , p= 0.07), was significantly and negatively correlated with change in IL-6 (Figure 2I, R=-0.290 , p= 0.02), and was significantly and negatively correlated with change in CRP (Figure 2J, R=-0.294 , p= 0.02).

Metabolomic analysis reveals candidate metabolites that can mediate bioenergetic changes in response to diet and exercise interventions

We sought to determine if metabolites could explain the heterogeneity of serum-mediated bioenergetic response to intervention as shown in Figure 1E. To do this, we first classified the participants as negative responders, non-responders, and positive responders based on the change in serum-mediated maximal respiration and these are shown in Figure 3A. A heat map illustrating the relationships of fold change of metabolites and responder status and the scores plot from orthogonal partial least-squares analysis illustrating the separation of responder status based on fold change of
metabolites are shown in Figure 3B. We used pattern analysis to determine what metabolites were either positively or negatively associated with the pattern of negative responders to non-responders to positive responders. These metabolites are shown in Figure 3C. Additionally, a heat map illustrating relationships of fold change of these top 25 metabolites and negative and positive responders and the scores plot from orthogonal-partial least-squares analysis illustrating the separation of negative and positive responders are shown in Supplemental Figure 3.

Correlations between change in serum-mediated bioenergetics and fold change of candidate metabolites

Spearman correlations were used to assess relationships between bioenergetic parameters and the top 25 metabolites identified. Significant relationships are summarized in Supplemental Table 7. Regression plots illustrating the relationships between change in serum-mediated max respiration and fold change of metabolites are shown in Figure 4. Change in serum-mediated max respiration was significantly and positively correlated with fold change of arabinose (Figure 4A, R=0.320, p= 0.01), was significantly and positively correlated with fold change of inosine (Figure 4B, R=0.367, p= 0.003), had a trend for a positive association with fold change of d-gluconic acid γ-lactone (Figure 4C, R=0.270, p= 0.08), was not significantly associated with fold change of 4-pyridoxate (Figure 4D, R=0.275, p= 0.11), was not associated with fold change of 10-hydroxydecanoate (Figure 4E, R=0.060, p= 0.64), was significantly and negatively correlated with fold change of 3-hydroxymethylglutarate (Figure 4F, R=-0.359, p= 0.04), and had a trend for a negative correlation with fold change of α-hydroxyisobutyrate (Figure 4G, R=-0.242, p= 0.05).
Candidate metabolite treatment and effects on bioenergetics

To determine if individual metabolites could affect bioenergetics, we tested a selection of top candidates by treating cells with the metabolites directly in Figure 5. The treatment effects of various concentrations of inosine, 3-hydroxymethylglutarate, and α-hydroxyisobutyrate on bioenergetics are shown in Figures 5A and 5B, Figures 5C and 5D, and Figures 5E and 5F, respectively. We did not observe an increase in maximal respiration with increasing inosine concentration. However, we did observe decreases in maximal respiration with increasing 3-hydroxymethylglutarate and α-hydroxyisobutyrate concentrations.

Discussion

In this study, we aimed to determine the effects of human serum collected before and after intervention, either resistance training or resistance training plus caloric restriction, on myoblasts in vitro and to identify and test potential circulating factors responsible for mediating these changes. We began by examining the overall effect of intervention on serum-mediated bioenergetics. We found that post-intervention serum significantly increased basal, ATP-linked, and maximal mitochondrial respiration when compared to pre-intervention. These results are consistent with observations of increased skeletal muscle mitochondrial function after exercise interventions in older adults (Meex et al., 2010; Menshikova et al., 2005, 2006; Phielix et al., 2010; Porter et al., 2015; Toledo and Goodpaster, 2013).

Next, we examined the effect of intervention group, either RT or RT + CR, on serum-mediated bioenergetics. We found that post-RT serum significantly increased basal and ATP-linked mitochondrial respiration and had a trend for increased maximal mitochondrial respiration, while post-RT + CR serum had trends for increased maximal
mitochondrial respiration and spare respiratory capacity. Previous studies examining the
effect of RT on mitochondria report increased mitochondrial function as measured by
phosphocreatine recovery time (Meex et al., 2010) and high-resolution respirometry of
permeabilized skeletal muscle fibers (Pesta et al., 2011; Porter et al., 2015). Studies
examining the effect of CR alone on skeletal muscle mitochondria found no changes in
mitochondrial content (Toledo et al., 2008) or mitochondrial function as measured by
phosphocreatine recovery time (Sparks et al., 2016). Exercise and CR are rarely
combined in studies examining mitochondrial function, but others have reported that
aerobic exercise alone increased mitochondrial content and mitochondrial enzyme
activities involved in electron transport and fatty acid oxidation while caloric restriction
sufficient to induce weight loss did not (Menshikova et al., 2018).

Our results are also consistent with a previous study examining the effects of 10% rat
serum on the mitochondrial bioenergetics of cultured β-cells (Cerqueira et al., 2016).
They found that serum factors alone from CR rats increased glucose-stimulated insulin
secretion, preserved mitochondrial function in response to glucose toxicity, and modified
mitochondrial morphology and dynamics. When combined, this information suggests that
serum factors alone are sufficient to induce mitochondrial changes that reflect the effects
of interventions such as RT and CR.

We observed less robust improvements in serum-mediated bioenergetics after RT + CR
serum treatment when compared to RT alone, suggesting that CR may blunt the
bioenergetic effects of RT with serum-mediated bioenergetics. Alternatively, RT may
alleviate some of the reduced mitochondrial bioenergetics associated with CR. Either of
these explanations is consistent with observations that CR decreases overall energy
expenditure and increases work efficiency (Hames et al., 2016), RT prevents a
substantial amount of lean mass loss associated with CR (Sardeli et al., 2018), and that
lean mass is positively associated with mitochondrial bioenergetics in monocytes (Bellissimo et al., 2019). Therefore, it is likely that CR blunts some of the positive effects of RT, while RT alleviates some of the negative effects of CR on mitochondrial bioenergetics.

Notably, we observed a range of responses to intervention with serum-mediated bioenergetics. This is best exemplified by examining the change in maximal respiration across all participants. We identified three groups of responders: negative responders, non-responders, and positive responders. While there is debate in the literature about whether there are true non-responders or if some of these observations could be attributed to measurement variability that is not adequately controlled for (Dankel and Loenneke, 2020; Sparks, 2017), this observation is also consistent with previous studies that reported heterogeneous responses to a variety of exercise interventions (Baird and Motl, 2019; Bouchard and Rankinen, 2001; Bouchard et al., 1999; Hubal et al., 2005; Kohrt et al., 1991; Pesta et al., 2011; Ross et al., 2019). Indeed, this pattern of heterogeneous response in terms of physical function was also observed in the participants from I'M FIT, the parent study for the samples utilized in this study (Chmelo et al., 2015).

Data on serum-mediated bioenergetics presented in this manuscript are all normalized to cell count. Cell proliferation upon overnight incubation with participant serum varied depending on intervention group and sex. Others have noted that serum source affects cell growth, proliferation, and migration of cultured cells as well as spheroid formation (Heger et al., 2018; Hennig et al., 1989).

We also observed sex differences in serum-mediated bioenergetics. In particular, female participant serum from the RT group significantly increased basal and ATP-linked mitochondrial respiration and had trends for increased maximal respiration and spare
respiratory capacity. We did not observe any significant increases in the male participants. These findings are consistent with observations with high-resolution respirometry that females had greater intrinsic mitochondrial respiratory rates (Cardinale et al., 2018) and exhibit decreased ADP sensitivity and increased sensitivity to malonyl-CoA-mediated respiratory inhibition in skeletal muscle compared to men (Miotto et al., 2018). Furthermore, these observations are supported by other studies, including sex differences in fiber type and fuel utilization during exercise (reviewed in Ansdell et al., 2020).

We found significant correlations between improvements in serum-mediated bioenergetics and improvements in physical function, as measured by Mat-sf, 400-m walk time, and gait speed, and improvements in inflammation, as measured by IL-6 and CRP. These results are consistent with cross-sectional studies completed in a subset of I'M FIT participants, where higher blood cell bioenergetics was associated with faster gait speed, knee extensor strength, and grip strength as well as lower levels of IL-6 (Tyrrell et al., 2015a, 2015b). Taken together, this suggests that improvements in mitochondrial bioenergetics, physical function, and inflammation in older adults are all connected and mediated by blood-borne circulating factors.

We performed metabolomics analyses to identify potential circulating factors that can mediate bioenergetic capacity. Our analyses revealed 25 potential circulating factors that were positively or negatively associated with the pattern of responses that we observed in the change in serum-mediated maximal respiration. We identified 3 metabolites that were significantly and positively associated with serum-mediated maximal respiration (arabinose, inosine, and d-gluconic acid γ-lactone) and 2 metabolites that were significantly and negatively associated with serum-mediated maximal respiration (3-
hydroxymethylglutarate and α-hydroxisobutyrate). Of these, we chose to test inosine, 3-hydroxymethyl-3-glutarate, and α-hydroxisobutyrate as potential circulating factors.

Inosine is a purine nucleoside produced by the catabolism of adenosine and has been examined for potential use in improving exercise performance (McNaughton et al., 1999; Starling et al., 1996; Williams et al., 1990), epilepsy (Kovacs et al., 2015), multiple sclerosis (Muñoz García et al., 2015), and Parkinson’s disease (Watanabe et al., 2020) due to potential neuroprotective properties shown in rats (Liu et al., 2006; Zai et al., 2009). We did not find a strong relationship between inosine concentration and increased serum-mediated bioenergetics. This suggests that inosine is not a metabolite that can directly affect mitochondrial bioenergetics and may be downstream of another process or, alternatively, that the mechanism of action involves other cell types.

3-hydroxymethylglutarate is an off-product that is a result of the incomplete conversion of 3-hydroxy-3-methylglutaryl-CoA to acetyl-CoA and acetoacetate by defective or inefficient 3-hydroxy-3-methylglutaryl-CoA lyase. 3-hydroxymethyl-3-glutarate accumulates in the mitochondria and high levels in urine have been associated with inborn errors of metabolism (Dena et al., 1978; Fernandes et al., 2016). We found a strong relationship between increasing concentrations of 3-hydroxymethyl-3-glutarate and decreased serum-mediated bioenergetics, particularly with maximal respiration. This suggests that, at least in older adults, resistance training and caloric restriction can alleviate some of the negative effects of 3-hydroxymethyl-3-glutarate on mitochondrial bioenergetics, through mechanisms that can be explored in future studies.

α-hydroxisobutyrate is an organic acid derived from α-ketobutyrate that is produced by amino acid catabolism and glutathione anabolism (Gall et al., 2010). α-hydroxisobutyrate has been presented as a potential early biomarker for insulin resistance and glucose intolerance (Ferrannini et al., 2013; Gall et al., 2010). In particular, α-hydroxisobutyrate
has been associated with increased insulin resistance and *in vitro* treatment of pancreatic β-cells with α-hydroxisobutyrate inhibited glucose-mediated insulin secretion (Ferrannini et al., 2013). We found a strong relationship between increasing concentrations of α-hydroxisobutyrate and decreased serum-mediated bioenergetics. Taken together, this suggests that α-hydroxisobutyrate may play a key role in the development of insulin resistance and the improvements in insulin sensitivity that are observed with RT and CR interventions.

Interestingly, we observed more robust direct effects of metabolites on mitochondrial bioenergetics that were more negatively associated with serum-mediated bioenergetics. This would be consistent with recent observations of old blood factors being more dominant in old blood (Rebo et al., 2016), including our work (Gonzalez-Armenta et al., 2021). A recent publication demonstrated that dilution of old blood with saline-albumin resulted in improvements in key aspects associated with heterochronic parabiosis, including improved muscle regeneration, reduced liver adiposity and fibrosis, and increased hippocampal neurogenesis (Mehdipour et al., 2020). These results suggest that targeting negative blood factors would have a greater therapeutic benefit and should be the focus of future studies.

Though they were not significantly correlated with serum-mediated bioenergetics, it was interesting that kynurenine, nicotinamide, and nicotinate all were in the top 25 potential circulating factors associated with changes in mitochondrial bioenergetics. These metabolites are important in NAD biosynthesis and recycling pathways (Covarrubias et al., 2021) and suggest that alterations in NAD metabolism could be involved in mediating mitochondrial metabolism as well.
The major strengths of this study include the leveraging of a large, completed randomized controlled clinical trial and the utilization of a method that could be readily applied to other studies and samples. We had to exclude 42 participants from our ancillary study, mainly due to very low mitochondrial respiration and cell death in response to serum treatment, which could be due to immune cross-reactivity between human serum and the mouse cell line or a dominant-negative circulating factor. Further investigation is needed to determine the root cause of cell death and low mitochondrial respiration, but we believe this method is a powerful tool for screening and testing potential mediators of mitochondrial bioenergetics and will help lead to the discovery of new therapeutic targets in a variety of contexts.

In this study, we report that serum, and circulating factors therein, are sufficient to recapitulate the effects of a RT or RT + CR intervention in vitro, including differentiating between the interventions, demonstrating sex differences in bioenergetic response to intervention, and is linked to key improvements in human healthspan: physical function and inflammation. We also identified and tested potential circulating factors responsible for mediating mitochondrial bioenergetics. Specifically, we identified 3-hydroxy-3-methylglutarate and α-hydroxisobutyrate as new potential therapeutic targets to improve healthspan. This study further supports a growing body of evidence that circulating factors are not only important for the aging process, but in interventions to improve healthspan as well.
Acknowledgments

This work was supported by the following grants from the National Institutes of Health: U01 AG060897, R56 AG057864, R01 AG054523, R21 AG051077. We would also like to acknowledge the support provided by the Proteomics and Metabolomics Shared Resource of Wake Forest School of Medicine and Wake Forest Baptist Comprehensive Cancer Center (NIH/NCI P30 CA12197).

Author Contributions

Conceptualization – JLGA, BJN, AJAM

Methodology – JLGA, AJAM

Investigation – JLGA, JL, JS

Formal analysis – JLGA, JB

Resources – BJN, CF

Writing – Original Draft – JLGA, AJAM

Writing – Review and Editing – JB, JL, CF, JS, BJN

Supervision – AJAM

Funding Acquisition – AJAM, BJN

Declaration of Interests

The authors declare no competing interests.
STAR Methods

Parent study: I'M FIT

Samples utilized in this ancillary study were collected during the Improving Muscle for Functional Independence Trial (I'M FIT) (clinicaltrials.gov; NCT01049698). Briefly, I'M FIT was a 5-mo, randomized controlled trial designed to determine whether CR enhances improvements in skeletal muscle function in response to RT in 126 older overweight and obese men and women. Participants were randomly assigned equally to a standardized, progressive RT intervention with CR (RT+CR) or without CR (RT) (Nicklas et al., 2015). The study was approved by the Wake Forest School of Medicine Institutional Review Board, and all participants provided written informed consent to participate.

Description of I'M FIT interventions

All participants in the study underwent 5-mo of RT 3 days/week on weight-stack resistance machines (Cybex International Inc. and Nautilus Inc.) at the Wake Forest University Clinical Research Center exercise facility (Nicklas et al., 2015). Briefly, the resistance training protocol was supervised by two exercise interventionists and included a gradual progression of weight and repetitions during the first month to allow familiarization with the equipment, minimize muscle soreness, and reduce injury potential, then the training goal was to complete 3 sets of 10 repetitions for each exercise at 70% of their one-repetition maximum (1RM) for that specific exercise with 1RM testing every 4 weeks. Participants performed an initial 5-min warm-up by walking or cycling at a slow pace followed by light stretching and concluded each session with a 5-min cool-down and light stretching. The machines used were 1) leg press, 2) leg extension, 3) seated leg curl, 4) seated calf raise, 5) incline press, 6) compound row, 7)
triceps press, and 8) bicep curl. Each participant recorded the weight lifted, the number of repetitions completed, and the number of sets completed for each exercise in a training log.

Participants assigned to RT only were instructed to follow a eucaloric diet, whereas those assigned to RT+CR underwent a dietary weight-loss intervention designed to elicit moderate weight loss (5–10%). Each participant was assigned a daily caloric intake to follow, which was derived from subtracting 600 kcal from his or her estimated daily energy needs for weight maintenance. A maximum of 2 meal replacements per day (shakes and bars; Slim-Fast Inc.) that contained approximately 220 kcal with 7–10 g protein, 33–46 g carbohydrates, 1.5–5 g fat, and 2–5 g fiber were provided to participants for breakfast and lunch. Dinner and snack options were recommended by the RD per each participant’s daily caloric goals and tailored to allow for individual preferences for various food items. Participants were asked to keep a diet log of all foods consumed, and the logs were monitored weekly by the RD to verify compliance with the weight-loss intervention.

Measurements completed in the parent study

All assessments took place in the Geriatric Research Center of the Wake Forest School of Medicine J Paul Sticht Center on Aging by examiners blinded to participant treatment assignment (Nicklas et al., 2015). Height, body mass, waist circumference, and hip circumference were measured without shoes and outer garments removed. BMI was calculated as body mass divided by height squared. Waist-to-hip ratio was calculated as waist circumference divided by hip circumference. Grip strength was measured twice on each hand to the nearest kilogram by using an isometric Hydraulic Hand Dynamometer (Jamar), and the maximal value from the right hand was used in analyses. Mobility was assessed using the Mobility Assessment Tool – short form (MAT-sf) (Rejeski et al.,
MAT-sf is a video-animated tool to assess self-perception of mobility that depicts a wooden mannequin performing a wide variety of physical activities (ranging from walking on level ground to carrying bags while climbing stairs) and a question about the participant's ability to perform the task measured on a discrete scale with possible scores of 30-80 (Rejeski et al., 2015). For 400-meter walk time, the participant was instructed to complete the distance (10 laps on a flat indoor surface 20 m in length) as quickly as possible without running. Lower-extremity function was assessed with the short physical performance battery (SPPB) (Guralnik et al., 1994), which consisted of a standing balance test, usual gait speed over a 4-meter course, and time to complete 5 repeated chair rises with arms folded across the chest. Results from each of the 3 tests were scored from 0 (inability to perform the task) to 4. The total SPPB score, which ranged from 0 (lowest function) to 12 (highest function), was used for analyses. Maximal knee extensor strength [in Newton-meters (Nm)] was measured with a dynamometer (Biodex Medical Systems Inc.) at speeds of 608 and 2408/s with the participant sitting and hips and knees flexed at 90°. Participants were asked to extend the knee and push as hard as possible against the resistance pad. The strength of the right leg recorded as the peak torque (in Nm) was used for analyses.

Serum collection and storage

Blood samples were collected in serum separator tubes in the morning after an overnight fast at baseline and post-intervention (at least 24 hours after the last acute bout of exercise). The blood was allowed to clot for 30-60 minutes, separated by centrifugation at 2,000 x g for 10 minutes, divided into aliquots, and stored at -80°C until needed for further analysis. Of the original 126 participants of I’M FIT, 100 participants had pre- and post-intervention serum available for analysis.
Inflammatory cytokines

IL-6 was measured by ELISA using high-sensitivity Quantikine Immunoassay kits from R&D Systems (Cat # SS600C). CRP was measured using high sensitivity assays from Siemens Healthineers USA (Cat # LKCRP1) on an IMMULITE Automated Immunoassay System. To eliminate variability due to reagent conditions, all kits were pre-ordered having the same lot number for all reagents. All samples were measured in duplicate and the mean was used for data analyses. Samples with high variation (CV > 10%) were repeated. Commercial controls and an internal laboratory control were run on each 96-well plate.

Cell culture, serum treatment, and metabolite treatment

C2C12 myoblast cells were obtained from ATCC (CRL-1772) and cultured in DMEM supplemented with 2mM glutamine, 10% FBS, and 1% penicillin/streptomycin. Cells were seeded at a density of 1.5×10^6 in T-75 culture flasks and were split every other day to avoid cultures becoming confluent.

For serum treatment, the experimental design was adapted from Cerqueira et al., 2016. In this study, C2C12 cells were seeded at a density of 15,000/well in a 96-well Seahorse culture plate and allowed to adhere overnight. Media was exchanged for serum-free media and 10% human serum was added to each well. Each participant's pre- and post-serum was used for treatment in quadruplicate.

For metabolite treatment, cells were seeded at a density of 15,000/well in a 96-well Seahorse culture plate and allowed to adhere overnight. Various concentrations of each metabolite were added to each well with 6-8 replicates per plate for a total of $n=10-16$. Each metabolite was added under, within, and over physiological ranges for these experiments. Inosine (Sigma, I4125) was added at concentrations of 0, 0.25, 0.5, 0.75,
1, 1.25, 1.5, 1.75, 2, and 3 uM (Farthing et al., 2015). 3-hydroxy-3-methylglutarate (Sigma, H4392) was added at concentrations of 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 5, and 10 uM (Václavík et al., 2020). α-hydroxyisobutyrate (Sigma, 323594) was added at concentrations of 0, 20, 40, 60, 80, 100, 125, 150, 175, and 200 uM (Tricò et al., 2017).

Cell counting with Gen5

Cell images were obtained pre- and post-treatment with a Cytation 5 Cell Imaging Multi-Mode Reader (Biotek Instruments, Winooski, VT). These images were used to monitor cell health and proliferation during treatment. High-contrast brightfield images were used to count cells and were completed using Gen5 software (Biotek Instruments, Winooski, VT).

High-throughput respirometry

Before each Seahorse run, media was exchanged for Seahorse XF assay media (Agilent, 103575) supplemented with 25mM glucose, 2mM glutamine, and 1mM pyruvate. Additionally, brightfield images were obtained using Seahorse XF Imaging and Cell Counting Software (Agilent Technologies, Santa Clara, CA). Extracellular flux analysis was completed using a Seahorse XFe96 Analyzer (Agilent Technologies, Santa Clara, CA) with a standard injection protocol for a mitochondrial stress test: oligomycin (final concentration: 0.75 uM), FCCP (final concentration: 1 uM), and Antimycin-A/Rotenone (final concentration: 1 uM). Hoescht 3342 dye (final concentration: 6 uM) was injected at the end of the assay and incubated at 37°C for 30 mins before fluorescence imaging in the XF Imaging and Cell Counting Software for normalization to cell count. Seahorse assay parameters (basal, ATP-linked, leak, max, and spare respiratory capacity) were corrected for non-mitochondrial respiration and calculated as previously described (Agilent Technologies, 2020).
Seahorse assay exclusion criteria

Seahorse analysis was completed with samples from the 100 participants that had completed the intervention and had pre- and post-serum available. Wells were excluded from Seahorse analysis if: (1) OCR measurements were negative or below 10 pmol/min, (2) oxygen level diverged more than 20 mmHg from background wells (typically a level of ~150 mmHg), (3) automated cell count after nuclei staining did not work due to low cell number, (4) only one or two wells were remaining per sample (i.e. only one well would not be included in the analysis for a pre-intervention sample), or (5) insufficient data for pre- or post-intervention (only full pre- and post-intervention pairs were included in the analysis). After the exclusion of these wells, there was sufficient data for 33 participants that completed the RT intervention and 35 participants that completed the RT + CR intervention, for a total of 68 participants included in this study.

Metabolomics Analysis

LC-MS grade water, acetonitrile, methanol, and formic acid were purchased from ThermoFisher Scientific (Waltham, MA, USA). 2-(N-morpholino)ethanesulfonic acid (MES) and ammonium formate were purchased from Sigma-Aldrich (St. Louis, MO, USA).

50 µL of I'M FIT serum (total n=68, RT=33, RT+CR=35) was spiked with 10 µL of MES solution which was freshly prepared in water (20 ng/mL). Metabolites were extracted by adding 200 µL of cold methanol and incubated on ice for 30 minutes. The supernatant was taken after centrifugation at 18,000 x g for 5 minutes and was dried under vacuum. The residue was reconstituted in 5% methanol for LC-MS analysis.

The LC-MS consisted of a Q Exactive HF hybrid quadrupole-Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA, USA) and a Vanquish UHPLC system.
Samples were analyzed on two different columns, a Hypersil GOLD pentafluorophenyl (PFP) column (2.1 x 100mm, 1.9 µm, Thermo Scientific, Waltham, MA, USA), and an Accucore Vanquish C18+ (2.1 x 100 mm, 1.5 µm, Thermo Scientific, Waltham, MA, USA) column. A linear gradient was employed for chromatographic separation using 100% water (mobile phase A) and 90% acetonitrile (mobile phase B) both of which contained 0.1% formic acid and 10mM ammonium formate. For the PFP column, the mobile phase flow rate was 0.25 mL/minutes and the gradient began at 2% B which was held for 2 minutes, then increased to 98% B at 8 minutes. This percentage was held for 2 minutes before being decreased to 2% B at 10.1 minutes and then held at that final percentage until 13 minutes. For the C18 column, the mobile phase flow rate was 0.20 mL/minutes and the gradient began at 0% B which was held for 3 minutes, then increased to 95% B at 6 minutes. This percentage was held for 1 minute before being decreased to 0% B at 7.1 minutes and then held at that final percentage until 10 minutes. Data was acquired by collecting full mass spectra (MS1) using polarity switching (positive/negative) at a resolution of 150K.

To identify metabolites, peak features were detected and integrated by the MSMLS Discovery software (IROA Technologies LLC, Sea Girt, NJ, USA) in combination with in-house compound libraries prepared using a Mass Spectrometry Metabolite Library (Sigma, St. Louis, MO, USA). To eliminate redundancy in compound identification, the most abundant ion in each metabolite was selected, which was then normalized to the total ion current (TIC) for relative quantification.

Statistical analysis

Statistical significance between groups (pre- and post-intervention or RT and RT + CR) was evaluated by paired two-tailed Student's t-tests using Microsoft Excel software. The
significance between groups was defined as $P \leq 0.05$. In addition, we examined the statistical differences between groups for post-intervention outcome values using an ANCOVA and a model adjusted for age, sex, and the baseline value for the outcome.

Spearman correlations were assessed between changes in bioenergetic parameters and physical function and inflammatory cytokines in both groups combined, separated by intervention group, and separated by sex. Partial correlations were adjusted for age, BMI, sex, baseline physical function, and baseline bioenergetics. Significance was defined as $P \leq 0.05$. Analysis was performed using SAS Enterprise Guide 7.12 (SAS Institute Inc., Cary, NC, USA).

To classify participants as negative responders, non-responders, and positive responders based on change in serum-mediated maximal respiration, we modified the method presented in Dankel and Loenneke, 2020 to account for some of the random error associated with measuring outcomes in exercise interventions. Briefly, we used the RT group to calculate a 75% confidence interval (CI) to account for 75% of the random error. For negative responders, we included participants who had a change in maximal respiration below the 75% CI, and for positive responders, we included participants who had a change in maximal respiration above the 75% CI. A summary of these parameters is shown in Supplemental Table 6.

Statistical analysis of the metabolomics data was completed in MetaboAnalyst 5.0 (Chong et al., 2019). Spearman correlations were also assessed between change in bioenergetic parameters and fold change of metabolites. Significance was defined as $P \leq 0.05$. Analysis was performed using SAS Enterprise Guide 7.12 (SAS Institute Inc., Cary, NC, USA).
References

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>RT (n=33)</th>
<th>RT + CR (n=35)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>69.4 ± 3.0</td>
<td>69.0 ± 3.2</td>
<td>0.63</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>15 (45)</td>
<td>14 (40)</td>
<td>0.65</td>
</tr>
<tr>
<td>White, n (%)</td>
<td>27 (82)</td>
<td>31 (89)</td>
<td>0.51</td>
</tr>
<tr>
<td>Body mass, kg</td>
<td>87.3 ± 15.0</td>
<td>86.7 ± 12.6</td>
<td>0.85</td>
</tr>
<tr>
<td>Height, cm</td>
<td>167.5 ± 12.0</td>
<td>168.2 ± 9.9</td>
<td>0.78</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>30.9 ± 2.5</td>
<td>30.5 ± 2.4</td>
<td>0.47</td>
</tr>
<tr>
<td>Waist, cm</td>
<td>95.7 ± 9.8</td>
<td>96.5 ± 10.0</td>
<td>0.72</td>
</tr>
<tr>
<td>Hip, cm</td>
<td>108.6 ± 7.1</td>
<td>108.1 ± 8.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td>0.88 ± 0.09</td>
<td>0.90 ± 0.09</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Figure 1. Experimental design and serum-mediated bioenergetics

A) Overall experimental design

B) Overall effect of intervention on serum-mediated bioenergetics with both intervention groups combined. Data are represented as mean ± SEM. Difference from pre, p-value: ** < 0.01, * < 0.05, # < 0.10

C) Effect of intervention (RT vs RT + CR) on serum-mediated bioenergetics. Data are represented as mean ± SEM. Difference from pre, p-value: ** < 0.01, * < 0.05, # < 0.10

D) Effect of intervention (RT vs RT + CR) on change in serum-mediated bioenergetics. Data are represented as mean ± SEM. Difference between groups, p-value: ** < 0.01, * < 0.05, # < 0.10

E) Change in max respiration in all participants.
Figure 2. Spearman correlations between change in serum-mediated max respiration and change in physical function and inflammatory cytokines

A) Spearman correlation between change in max respiration and change in mobility as assessed by Mat-sf. (R=0.294, p= 0.03)

B) Spearman correlation between change in max respiration and change in 400m walk time. (R=-0.215, p= 0.08)

C) Spearman correlation between change in max respiration and change in gait speed. (R=0.180, p= 0.14)

D) Spearman correlation between change in max respiration and change in IL-6. (R=-0.255, p= 0.04)

E) Spearman correlation between change in max respiration and change in CRP. (R=-0.224, p= 0.08)

F) Spearman correlation between change in spare respiratory capacity and change in mobility as assessed by Mat-sf. (R=0.372 , p= 0.004)

G) Spearman correlation between change in spare respiratory capacity and change in 400m walk time. (R=-0.246 , p= 0.04)

H) Spearman correlation between change in spare respiratory capacity and change in gait speed. (R=0.224 , p= 0.07)

I) Spearman correlation between change in spare respiratory capacity and change in IL-6. (R=-0.290 , p= 0.02)

J) Spearman correlation between change in spare respiratory capacity and change in CRP. (R=-0.294 , p= 0.02)
Figure 3. Metabolomic analysis reveals potential candidate metabolites that could mediate bioenergetic changes in response to diet and exercise interventions

A) Using change in maximal respiration, we classified participants as negative responders, non-responders, and positive responders for metabolomics analysis.

B) Heat map illustrating relationships of fold change of metabolites and responder status and scores plot from orthogonal-partial least squares analysis illustrating the separation of responder status based on fold change of metabolites.

C) Pattern analysis reveals 25 potential metabolites that are either positively or negatively associated with the pattern of negative responders to non-responders to positive responders.
Figure 4. Spearman correlations between change in serum-mediated max respiration and fold change of candidate metabolites

A) Spearman correlation between change in max respiration and fold change of arabinose. (R=0.320, p= 0.01)

B) Spearman correlation between change in max respiration and fold change of inosine. (R=0.367, p= 0.003)

C) Spearman correlation between change in max respiration and fold change of D-gluconic acid γ-lactone. (R=0.270, p= 0.08)

D) Spearman correlation between change in max respiration and fold change of 4-pyridoxate. (R=0.275, p= 0.11)

E) Spearman correlation between change in max respiration and fold change of 10-hydroxydecanoate. (R=0.060, p= 0.64)

F) Spearman correlation between change in max respiration and fold change of 3-hydroxymethylglutarate. (R=-0.359 , p= 0.04)

G) Spearman correlation between change in max respiration and fold change of α-hydroxyisobutyrate. (R=-0.242 , p= 0.05)
Figure 5. Candidate metabolite treatment and bioenergetics

A) Fold change over vehicle control of C2C12 cells treated with various concentrations of inosine for 24 hours. Data are represented as mean ± SEM.

B) Fold change over vehicle control of max respiration in C2C12 cells treated with increasing concentrations of inosine for 24 hours.

C) Fold change over vehicle control of C2C12 cells treated with various concentrations of 3-hydroxymethylglutarate for 24 hours. Data are represented as mean ± SEM.

D) Fold change over vehicle control of max respiration in C2C12 cells treated with increasing concentrations of 3-hydroxymethylglutarate for 24 hours.

E) Fold change over vehicle control of C2C12 cells treated with various concentrations of α-hydroxyisobutyrate for 24 hours. Data are represented as mean ± SEM.

F) Fold change over vehicle control of max respiration in C2C12 cells treated with increasing concentrations of α-hydroxyisobutyrate for 24 hours.
Supplemental Table 1. Unadjusted mitochondrial respiration and physical function measurements at baseline and changes with intervention (** < 0.01, * < 0.05, # < 0.10)

<table>
<thead>
<tr>
<th></th>
<th>Mitochondrial Respiration Measurements</th>
<th>Physical Function Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RT</td>
<td>RT + CR</td>
</tr>
<tr>
<td>Basal</td>
<td>40.8 ± 10.6</td>
<td>43.3 ± 16.8</td>
</tr>
<tr>
<td></td>
<td>11.1 ± 23.1</td>
<td>3.4 ± 13.3</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>ATP-linked</td>
<td>34.4 ± 10.4</td>
<td>36.7 ± 15.1</td>
</tr>
<tr>
<td></td>
<td>10.2 ± 19.8</td>
<td>1.9 ± 12.0</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>Leak</td>
<td>6.9 ± 2.6</td>
<td>6.8 ± 2.8</td>
</tr>
<tr>
<td></td>
<td>0.5 ± 4.8</td>
<td>1.3 ± 3.0</td>
</tr>
<tr>
<td></td>
<td>0.56</td>
<td>0.02</td>
</tr>
<tr>
<td>Max</td>
<td>130.1 ± 34.8</td>
<td>134.3 ± 51.7</td>
</tr>
<tr>
<td></td>
<td>23.1 ± 76.7</td>
<td>12.7 ± 43.4</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>SRC</td>
<td>89.3 ± 27.6</td>
<td>91.1 ± 38.9</td>
</tr>
<tr>
<td></td>
<td>12.1 ± 57.4</td>
<td>9.3 ± 32.7</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Physical Function Measurements

Grip Strength	33.3 ± 12.1	30.4 ± 9.7
	1.2 ± 4.0	3.3 ± 4.5
	0.09	<0.01
MAT-sf	62.5 ± 6.4	62.7 ± 5.7
	-1.6 ± 5.9	1.2 ± 5.1
	0.17	0.18
400m Walk	320.7 ± 52.9	304.3 ± 42.3
	8.0 ± 43.4	-6.2 ± 27.1
	0.30	0.18
Gait Speed	3.6 ± 0.7	3.6 ± 0.6
	-0.1 ± 0.4	-0.2 ± 0.6
	0.22	**0.05**
SPPB	10.9 ± 1.3	10.8 ± 1.1
	0.3 ± 1.3	0.5 ± 1.0
	0.29	<0.01
Knee Ex Strength	115.8 ± 46.1	115.0 ± 30.7
	7.9 ± 17.2	7.2 ± 15.8
	0.02	**0.01**

- Basal: Baseline measurement.
- ATP-linked: ATP-linked respiration measurement.
- Leak: Leak measurement.
- Max: Maximum measurement.
- SRC: SRC measurement.
- Grip Strength: Grip strength measurement.
- MAT-sf: Maximum aerobic test-sprint.
- 400m Walk: 400m walk time.
- Gait Speed: Gait speed.
- SPPB: Short Physical Performance Battery.
- Knee Ex Strength: Knee extension strength.
Supplemental Table 2. Model adjusted\(^1\) postintervention mitochondrial respiration and physical function measurement least-square means and adjusted group differences (95% CIs) (** < 0.01, * < 0.05, # < 0.10)

<table>
<thead>
<tr>
<th>Postintervention Values</th>
<th>RT</th>
<th>RT + CR</th>
<th>RT – RT+CR differences</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial Respiration Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td>52.8</td>
<td>45.8</td>
<td>7.0 (-1.8, 15.9)</td>
<td>0.12</td>
</tr>
<tr>
<td>ATP-linked</td>
<td>45.5</td>
<td>37.8</td>
<td>7.7 (-0.0, 15.4)</td>
<td>0.05*</td>
</tr>
<tr>
<td>Leak</td>
<td>7.4</td>
<td>8.3</td>
<td>-0.9 (-2.7, 0.9)</td>
<td>0.31</td>
</tr>
<tr>
<td>Max</td>
<td>154.7</td>
<td>145.7</td>
<td>9.0 (-21.3, 39.3)</td>
<td>0.56</td>
</tr>
<tr>
<td>SRC</td>
<td>101.8</td>
<td>100.1</td>
<td>1.7 (-21.1, 24.6)</td>
<td>0.88</td>
</tr>
<tr>
<td>Physical Function Measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grip Strength</td>
<td>33.2</td>
<td>35.0</td>
<td>-1.8 (-3.9, 0.4)</td>
<td>0.10*</td>
</tr>
<tr>
<td>MAT-sf</td>
<td>60.7</td>
<td>63.5</td>
<td>-2.8 (-5.8, 0.1)</td>
<td>0.06*</td>
</tr>
<tr>
<td>400m Walk</td>
<td>321.4</td>
<td>305.9</td>
<td>15.5 (-2.7, 33.7)</td>
<td>0.09*</td>
</tr>
<tr>
<td>Gait Speed</td>
<td>3.5</td>
<td>3.4</td>
<td>0.1 (-0.2, 0.4)</td>
<td>0.39</td>
</tr>
<tr>
<td>SPPB</td>
<td>11.1</td>
<td>11.3</td>
<td>-0.2 (-0.7, 0.3)</td>
<td>0.39</td>
</tr>
<tr>
<td>Knee Ex Strength</td>
<td>122.9</td>
<td>122.8</td>
<td>0.1 (-7.7, 8.0)</td>
<td>0.98</td>
</tr>
</tbody>
</table>

\(^1\) model adjusted for age, sex, and baseline value of outcome. P-values were determined using an ANCOVA between-group test of postintervention values.
Supplemental Table 3. Spearman correlations between change in mitochondrial respiration measurements and change in physical function and inflammatory cytokines for all participants (** < 0.01, * < 0.05, # < 0.10)

<table>
<thead>
<tr>
<th>Grip Strength</th>
<th>Basal</th>
<th>ATP-linked</th>
<th>Leak</th>
<th>Max</th>
<th>SRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spearman</td>
<td>0.070</td>
<td>0.053</td>
<td>0.283*</td>
<td>0.092</td>
<td>0.064</td>
</tr>
<tr>
<td>Partial Age</td>
<td>0.152</td>
<td>0.162</td>
<td>0.219</td>
<td>0.107</td>
<td>0.046</td>
</tr>
<tr>
<td>Partial BMI</td>
<td>0.117</td>
<td>0.130</td>
<td>0.220</td>
<td>0.086</td>
<td>0.036</td>
</tr>
<tr>
<td>Partial Sex</td>
<td>0.189</td>
<td>0.190</td>
<td>0.234*</td>
<td>0.163</td>
<td>0.081</td>
</tr>
<tr>
<td>Partial BL Grip Strength</td>
<td>0.111</td>
<td>0.082</td>
<td>0.341*</td>
<td>0.172</td>
<td>0.140</td>
</tr>
<tr>
<td>Partial BL Bioenergetics</td>
<td>0.037</td>
<td>0.036</td>
<td>0.146</td>
<td>0.038</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Mat-sf	Spearman	-0.021	-0.016	0.255*	0.294*	0.372**
Partial Age	-0.199	-0.228	0.052	0.197	0.378*	
Partial BMI	-0.206	-0.222	-0.041	0.148	0.332*	
Partial Sex	-0.196	-0.227	0.089	0.229	0.403*	
Partial BL Mat-sf	0.019	-0.032	0.320*	0.298*	0.380**	
Partial BL Bioenergetics	0.100	0.051	0.257*	0.304*	0.373*	

400m Walk	Spearman	-0.020	-0.024	0.066	-0.215*	-0.246*
Partial Age	0.072	0.039	0.080	-0.109	-0.222	
Partial BMI	0.087	0.053	0.098	-0.084	-0.201	
Partial Sex	0.128	0.079	0.115	-0.071	-0.129	
Partial BL 400m Walk Time	-0.025	-0.014	0.011	-0.236*	-0.265*	
Partial BL Bioenergetics	-0.019	-0.021	0.032	-0.261*	-0.324*	

Gait Speed	Spearman	0.032	-0.001	0.116	0.180	0.224*
Partial Age	0.065	-0.099	-0.044	0.089	0.176	
Partial BMI	-0.063	-0.116	0.051	0.162	0.275	
Partial Sex	-0.029	-0.065	-0.039	0.123	0.199	
Partial BL Gait Speed	0.003	-0.013	0.006	0.116	0.154	
Partial BL Bioenergetics	0.033	-0.007	0.016	0.179	0.245*	

SPPB	Spearman	0.118	0.056	0.202	0.147	0.129
Partial Age	0.162	0.100	0.259	0.203	0.196	
Partial BMI	0.211	0.183	0.180	0.168	0.137	
Partial Sex	0.187	0.117	0.317*	0.249	0.225	
Partial BL SPPB	0.061	-0.006	0.166	0.143	0.142	
Partial BL Bioenergetics	0.315*	0.266*	0.260*	0.254*	0.204	

Knee Extensor Strength	Spearman	-0.019	-0.001	-0.186	-0.057	-0.035
Partial Age	-0.070	-0.014	-0.202	-0.077	0.010	
Partial BMI	-0.077	-0.031	-0.157	-0.047	0.074	
Partial Sex	-0.153	-0.079	-0.421*	-0.183	-0.035	
Partial BL Knee Extensor Strength	-0.009	0.005	-0.179	-0.043	0.021	
Partial BL Bioenergetics	0.061	0.124	-0.249*	0.019	0.061	

IL-6	Spearman	-0.019	-0.077	0.139	-0.255*	-0.290*
Partial Age	0.000	-0.052	0.123	-0.225*	-0.259*	
Partial BMI	0.000	-0.054	0.131	-0.213*	-0.251*	
Partial Sex	0.049	-0.019	0.173	-0.181	-0.228*	
Partial BL IL-6	0.016	-0.014	0.081	-0.278*	-0.312*	
Partial BL Bioenergetics	0.035	0.002	0.719	-0.222*	-0.253*	

CRP	Spearman	-0.048	-0.013	-0.024	-0.224*	-0.294*
Partial Age	-0.048	-0.013	-0.024	-0.226*	-0.266*	
Partial BMI	-0.056	-0.025	-0.005	-0.205	-0.274*	
Partial Sex	-0.018	0.008	0.008	-0.200	-0.277*	
Partial BL CRP	-0.046	-0.005	0.004	-0.223*	-0.285*	
Partial BL Bioenergetics	-0.041	0.008	-0.046	-0.220*	-0.286*	
Supplemental Table 4. Spearman correlations between change in mitochondrial respiration measurements and change in physical function and inflammatory cytokines by intervention group (** < 0.01, * < 0.05, # < 0.10)

<table>
<thead>
<tr>
<th></th>
<th>RT</th>
<th>RT + CR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basal</td>
<td>ATP-linked</td>
</tr>
<tr>
<td>Grip Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>0.063</td>
<td>-0.229</td>
</tr>
<tr>
<td>Partial Age</td>
<td>0.010</td>
<td>-0.073</td>
</tr>
<tr>
<td>Partial BMI</td>
<td>0.009</td>
<td>-0.079</td>
</tr>
<tr>
<td>Partial Sex</td>
<td>0.023</td>
<td>-0.055</td>
</tr>
<tr>
<td>Partial BL Grip</td>
<td>0.070</td>
<td>-0.024</td>
</tr>
<tr>
<td>Partial BL Bioenergetics</td>
<td>0.145</td>
<td>0.068</td>
</tr>
<tr>
<td>400m Walk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>-0.075</td>
<td>-0.106</td>
</tr>
<tr>
<td>Partial Age</td>
<td>0.266</td>
<td>0.275</td>
</tr>
<tr>
<td>Partial BMI</td>
<td>0.232</td>
<td>0.244</td>
</tr>
<tr>
<td>Partial Sex</td>
<td>0.180</td>
<td>0.197</td>
</tr>
<tr>
<td>Partial BL Speed</td>
<td>-0.056</td>
<td>-0.074</td>
</tr>
<tr>
<td>Partial BL Bioenergetics</td>
<td>0.141</td>
<td>0.143</td>
</tr>
<tr>
<td>SPPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>0.179</td>
<td>0.119</td>
</tr>
<tr>
<td>Partial Age</td>
<td>-0.055</td>
<td>-0.152</td>
</tr>
<tr>
<td>Partial BMI</td>
<td>-0.086</td>
<td>-0.114</td>
</tr>
<tr>
<td>Partial Sex</td>
<td>-0.044</td>
<td>-0.154</td>
</tr>
<tr>
<td>Partial BL SPPB</td>
<td>0.091</td>
<td>0.025</td>
</tr>
<tr>
<td>Partial BL Bioenergetics</td>
<td>0.414*</td>
<td>0.376*</td>
</tr>
<tr>
<td>Knee-Extensor Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>-0.177</td>
<td>-0.188</td>
</tr>
<tr>
<td>Partial Age</td>
<td>-0.175</td>
<td>-0.231</td>
</tr>
<tr>
<td>Partial BMI</td>
<td>-0.316</td>
<td>-0.301</td>
</tr>
<tr>
<td>Partial Sex</td>
<td>-0.316</td>
<td>-0.276</td>
</tr>
<tr>
<td>Partial BL Knee Extensor Strength</td>
<td>-0.213</td>
<td>-0.205</td>
</tr>
<tr>
<td>Partial BL Bioenergetics</td>
<td>0.057</td>
<td>0.008</td>
</tr>
<tr>
<td>CRP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearman</td>
<td>0.083</td>
<td>0.036</td>
</tr>
<tr>
<td>Partial Age</td>
<td>0.076</td>
<td>0.084</td>
</tr>
<tr>
<td>Partial BMI</td>
<td>0.087</td>
<td>0.042</td>
</tr>
<tr>
<td>Partial Sex</td>
<td>0.089</td>
<td>0.040</td>
</tr>
<tr>
<td>Partial BL CRP</td>
<td>0.061</td>
<td>0.017</td>
</tr>
<tr>
<td>Partial BL Bioenergetics</td>
<td>0.025</td>
<td>-0.035</td>
</tr>
</tbody>
</table>
Supplemental Table 5. Spearman correlations between change in mitochondrial
respiration measurements and change in physical function and inflammatory cytokines
by sex (** < 0.01, * < 0.05, # < 0.10)

195


Supplemental Table 6. Parameters used for classification of responder status (from Dankel, 2019)

<table>
<thead>
<tr>
<th>Change Mean ± SD</th>
<th>RT</th>
<th>RT + CR</th>
<th>p-value for equality of variance</th>
<th>(RT ΔSD*1.15)</th>
<th>75% CI of random change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal</td>
<td>11.1 ± 23.1</td>
<td>3.4 ± 13.3</td>
<td>0.003</td>
<td>26.6</td>
<td>-3.5, 49.7</td>
</tr>
<tr>
<td>ATP-linked</td>
<td>10.2 ± 19.8</td>
<td>1.9 ± 12.0</td>
<td>0.006</td>
<td>22.8</td>
<td>-3.0, 42.6</td>
</tr>
<tr>
<td>Leak</td>
<td>0.5 ± 4.8</td>
<td>1.3 ± 3.0</td>
<td>0.008</td>
<td>5.5</td>
<td>-0.7, 10.3</td>
</tr>
<tr>
<td>Max</td>
<td>23.1 ± 76.7</td>
<td>12.7 ± 43.4</td>
<td>0.002</td>
<td>88.2</td>
<td>-11.5, 164.9</td>
</tr>
<tr>
<td>SRC</td>
<td>12.1 ± 57.4</td>
<td>9.3 ± 32.7</td>
<td>0.002</td>
<td>66.0</td>
<td>-8.6, 123.4</td>
</tr>
</tbody>
</table>
Supplemental Table 7. Spearman correlations between change in mitochondrial respiration measurements and fold change of metabolites (** < 0.01, * < 0.05, # < 0.10)

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Basal</th>
<th>ATP-linked</th>
<th>Leak</th>
<th>Max</th>
<th>SRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabinose</td>
<td>0.282*</td>
<td>0.313*</td>
<td>0.080</td>
<td>0.320*</td>
<td>0.315*</td>
</tr>
<tr>
<td>Inosine</td>
<td>0.260*</td>
<td>0.278*</td>
<td>0.087</td>
<td>0.367**</td>
<td>0.304*</td>
</tr>
<tr>
<td>D-gluconic acid γ-lactone</td>
<td>0.062</td>
<td>0.038</td>
<td>0.229#</td>
<td>0.270*</td>
<td>0.330*</td>
</tr>
<tr>
<td>4-pyridoxate</td>
<td>0.401*</td>
<td>0.386*</td>
<td>0.295</td>
<td>0.275</td>
<td>0.168</td>
</tr>
<tr>
<td>10-hydroxydecanoate</td>
<td>-0.201</td>
<td>-0.242#</td>
<td>0.061</td>
<td>0.060</td>
<td>0.078</td>
</tr>
<tr>
<td>3-hydroxymethylglutarate</td>
<td>-0.455*</td>
<td>-0.448*</td>
<td>-0.101</td>
<td>-0.359*</td>
<td>-0.334</td>
</tr>
<tr>
<td>α-hydroxyisobutyrate</td>
<td>-0.331*</td>
<td>-0.380**</td>
<td>0.001</td>
<td>-0.242#</td>
<td>-0.155</td>
</tr>
</tbody>
</table>
Supplemental Figure 1. Changes in cell count after serum treatment

A) Change in cell count pre- and post-intervention after serum treatment.

B) Change in cell count with intervention by intervention group (RT vs RT + CR).

C) Change in cell count pre- and post-intervention after serum treatment in both treatment groups by sex.

D) Change in cell count with intervention by intervention group and sex.
Supplemental Figure 2. Sex differences in serum-mediated bioenergetics

A) Effect of RT intervention on serum-mediated bioenergetics by sex. Data are represented as mean ± SEM. Difference from pre, p-value: * < 0.05, # < 0.10

B) Effect of RT + CR intervention on serum-mediated bioenergetics by sex. Data are represented as mean ± SEM. Difference from pre, p-value: * < 0.05, # < 0.10

C) Effect of sex (male vs female) on change in serum-mediated bioenergetics in the RT group. Data are represented as mean ± SEM.

D) Effect of sex (male vs female) on change in serum-mediated bioenergetics in the RT + CR group. Data are represented as mean ± SEM.
Supplemental Figure 3. Heat map and scores plot for top 25 metabolites

Heat map illustrating relationships of fold change of top 25 metabolites and responder status and scores plot from orthogonal-partial least squares analysis illustrating the complete separation of negative and positive responders based on fold change of metabolites.
CHAPTER FIVE:

DISCUSSION

Jenny L. Gonzalez-Armenta
I. SUMMARY OF RESULTS

As older adults continue to live longer and, as a result, with more comorbidities, there is a continuing need to understand the cellular and molecular processes, including mitochondrial dysfunction, that are implicated in healthy aging and age-related diseases. Our lab and others have pioneered the use of blood cells as reporters of systemic mitochondrial bioenergetic capacity based on the premise that these circulating cells are continuously exposed to a myriad of factors that mediate bioenergetic capacity across multiple tissues. In support of this theory, our lab has demonstrated that blood cell mitochondrial bioenergetics can recapitulate the bioenergetics of the brain, skeletal muscle, and cardiac muscle and that increased circulating IL-6 is associated with decreased mitochondrial bioenergetic capacity in blood cells. However, direct evidence supporting the effect of circulating factors on bioenergetics is limited. Therefore, the overarching hypothesis of this dissertation was that there are circulating factors in blood associated with aging, and consequently, age-related diseases and interventions to improve healthspan, that can mediate systemic bioenergetic capacity.

In Chapter Two, we examined the effects of whole dietary patterns, either a Mediterranean or a Western diet, on skeletal muscle mitochondrial bioenergetics. We used a cynomolgus macaque model to examine the effects of whole diets administered for 30 months, approximately equivalent to 8 human years, and performed bioenergetic profiling of skeletal muscle comprised of high-resolution respirometry of permeabilized muscle fibers, with and without fatty acid substrates, tissue citrate synthase activity, and western blot analyses. We found higher skeletal muscle mitochondrial respiration with and without fatty acid substrates in female cynomolgus macaques fed a Western versus Mediterranean diet. This was independent of citrate synthase activity, a marker of
mitochondrial volume or content, and VDAC expression. Additionally, we found that measures of respiration in response to fatty acids were significantly and positively correlated with both insulin resistance and plasma insulin levels.

In Chapter Three, we used a heterochronic parabiosis mouse model to test the hypothesis that circulating factors present in blood mediate age-related bioenergetic decline in skeletal muscle. We examined mitochondrial morphology, expression of mitochondrial electron transport chain complexes, and performed high-resolution respirometry of permeabilized skeletal muscle fibers in pairs of heterochronic and isochronic parabionts. When comparing isochronic controls, we found reduced mitochondrial area and length, reduced expression of complex IV in skeletal muscle, and observed decreased mitochondrial respiration in skeletal muscle of older mice compared to young mice. Young heterochronic mice had significantly reduced mitochondrial area and length, a trend for reduced expression of complex IV, and significantly reduced mitochondrial respiration when compared to young isochronic controls. Conversely, when comparing old heterochronic mice to old isochronic controls, we did not observe statistically significant differences in mitochondrial morphology, complex IV expression, or mitochondrial respiration. Further, we did not observe any differences in mitochondrial morphology, complex IV expression, or mitochondrial respiration between young heterochronic or old heterochronic mice.

In Chapter Four, we aimed to determine the effects of human serum, and therefore, blood-borne circulating factors, before and after intervention, either resistance training (RT) or resistance training plus caloric restriction (RT + CR), on naïve muscle cells in vitro. We report that serum-mediated bioenergetics can recapitulate the effects of a RT or RT + CR intervention and are consistent with previous studies of mitochondrial
function with these interventions, including: improved mitochondrial bioenergetics after intervention, differential mitochondrial bioenergetic effects of RT versus RT + CR, and the observation that female participants had a more robust bioenergetic response to intervention. We also observed that serum-mediated bioenergetics was associated with key improvements in human healthspan: physical function and reduced inflammation. We also used metabolomics to identify and test potential circulating factors responsible for mediating mitochondrial bioenergetics. Specifically, we identified 3-hydroxy-3-methylglutarate and α-hydroxyisobutyrate as new potential therapeutic targets to improve healthspan.

In summary, this dissertation provides evidence that circulating factors mediate bioenergetic capacity in multiple contexts, including aging, diet, and exercise. We determined that dietary composition, such as a Western diet, directly affects systemic bioenergetic capacity, and increased fatty acid respiration in muscle is associated with early insulin resistance. Using heterochronic parabiosis, we demonstrated that circulating factors modulate age-related bioenergetic decline via changes in mitochondrial structure and function, and circulating factors associated with old blood have a greater negative effect on mitochondrial structure and function when compared to young blood. Finally, we established that serum-mediated bioenergetics can recapitulate the effects of resistance training and caloric restriction in vitro and are connected to key features of human health such as physical function and reduced inflammation, and metabolomics analysis revealed new potential mediators of mitochondrial bioenergetics, such as 3-hydroxy-3-methylglutarate and α-hydroxyisobutyrate.
II. DIETARY COMPOSITION AND MITOCHONDRIAL BIOENERGETICS

In Chapter Two, we reported that diet composition and whole dietary patterns influenced skeletal muscle mitochondrial bioenergetics. Previous studies of mitochondrial bioenergetics have focused on the manipulation of a single macronutrient, such as fat, rather than a whole dietary pattern. Others have reported that high-fat diets in rodents are associated with increased mitochondrial respiration in response to both fatty acid and carbohydrate substrates, increased mitochondrial biogenesis, and increased mitochondrial content, despite increased insulin resistance (1–4). However, these studies include very high-fat diets with 45% to 60% of total calories from fat and are compared to control diets that contain 8-12% of calories from fat. Additionally, the composition of fats in these studies vary. Some studies include flaxseed oil and olive oil as sources of fat, while others have lard as the major source. It should be noted that the study presented in this dissertation does not compare high-fat and low-fat diets. Both the Western and Mediterranean experimental diets contain 31% of calories from fat and we matched the experimental diets on protein, carbohydrate, and total fat content. The Western experimental diet has a larger amount of saturated fat, while the Mediterranean experimental diet has a larger percentage of monounsaturated and polyunsaturated fats. Our results suggest that manipulations of the types of fats consumed alone can alter mitochondrial bioenergetics, independent of other factors, such as macronutrient composition, energy intake, and obesity.

We observed significantly higher respiration both with and without fatty acid oxidation in permeabilized skeletal muscle fibers from animals fed a Western compared to a Mediterranean diet. We also observed strong positive correlations between fatty acid oxidation and HOMA-IR and fasting blood insulin. These results suggest that there is a
potential link between increased fatty acid oxidation of octanoylcarnitine and the development of insulin resistance. Within-group relationships were strongest in the Western diet group and generally not significant in the Mediterranean diet group, perhaps reflecting greater heterogeneity in responses to diet in the Western diet group. However, when both diet groups are combined, similar relationships to the Western diet group persist. Partial correlations controlling for body weight and age suggest that insulin AUC was positively associated with FAO and FAO max ETS capacity in the Western diet group and negatively associated in the Mediterranean diet group, suggesting a complex diet by body weight interaction. In light of these correlations, further studies are necessary to understand the link between fatty acid oxidation and insulin resistance.

It should be noted that while animal studies find increased mitochondrial respiration with insulin resistance, human studies of diabetics and obese individuals have reported reductions in skeletal muscle mitochondrial bioenergetics (5–10). In this study, metabolic perturbations associated with the Western diet may be related to a prediabetic state in humans. A significantly longer study would be required to determine the temporal relationships between bioenergetic changes associated with diet and the development of overt diabetes. Our results may reflect an early adaptation to insulin resistance which may be followed by bioenergetic decline upon disease progression.

Previous studies have linked Western diets to chronic low-grade inflammation with elevated levels of biomarkers, such as C-reactive protein, interleukins 6 and 18, and fibrinogen (11). In the context of obesity and insulin resistance, increased levels of tumor necrosis factor-α, interleukin 6, and C-reactive protein have also been reported in both animal models and humans (12). Inflammation is associated with increased mitochondrial respiration in brown adipose tissue, adipocytes, and fibroblasts (13–15).
Lark et al. have suggested that high-fat diets that increase mitochondrial respiration and partially oxidized lipid metabolites also increase the production of reactive oxygen species and H$_2$O$_2$ that could lead to the induction of proinflammatory cascades and prolonged inflammation (12). In the present study, the lower mitochondrial respiration we observed with the Mediterranean diet may be linked to reduced reactive oxygen species, with the potential to lower systemic inflammatory burden. This diet is high in n-3 fatty acids and has a lower n-6:n-3 fatty acid ratio, both of these have been associated with anti-inflammatory effects and could play a role in the differences in mitochondrial bioenergetics observed (16, 17). Future studies designed to investigate the effects of Western and Mediterranean dietary patterns on inflammation will need to be conducted to determine how these relate to differences in mitochondrial metabolism.

In light of our findings that circulating factors are involved in age-related bioenergetic decline in Chapter Three and interventions to improve healthspan, such as RT and CR in Chapter Four, the differences in mitochondrial metabolism we observed between Western and Mediterranean diet in this study may be driven by circulating factors. Though further investigation is warranted, this hypothesis is supported by recent discoveries in the field of metabolomics linking unique metabolomic signatures to dietary patterns, such as Western or Mediterranean diets (18, 19). Diet can affect the metabolome in two ways: by affecting the endogenous metabolome (all metabolites present in a biological sample that are derived from genes) or by changing the composition of the food metabolome (metabolites that are derived from food consumption and their metabolism) (20, 21). A Western dietary pattern has been associated with alterations in short-chain acylcarnitines, leucine, phenylalanine (18). On the other hand, a Mediterranean diet has been associated with altered levels of various metabolites derived from carbohydrate, amino acid, and lipid sources, including 3-
hydroxybutyrate, citrate, and cisaconitate, creatine, creatinine, proline, N-acetylglutamine, glycine, branched-chain amino acids, oleic acid, and suberic acid (19). Taken together, this information suggests that both differences in mitochondrial function in skeletal muscle after either a Western or Mediterranean diet and the potential link between high skeletal muscle mitochondrial respiration and the consumption of a Western diet and the development of insulin resistance may be mediated by circulating factors, such as metabolites.
III. CIRCULATING FACTORS, AGING, AND MITOCHONDRIAL BIOENERGETICS

In Chapter Three, our results provided striking evidence of the negative impact of circulating factors in old blood on mitochondrial structure and function. Young heterochronic mice had significantly altered mitochondrial morphology, reduced expression of complex IV, and significantly reduced mitochondrial respiration when compared to young isochronic controls. These mitochondrial alterations may underlie age-related differences in muscle function. Other labs have reported that young heterochronic mice exhibit decreased muscle performance, but no differences in muscle regeneration or fibrosis after muscle injury compared to young isochronic controls (22, 23). Notably, lower skeletal muscle mitochondrial respiration has been associated with lower physical function as measured by muscle strength and gait speed (24).

Collectively, these results suggest that altered mitochondrial structure and function is not only a major aspect of age-related decline in skeletal muscle but that circulating factors can mediate these changes. Furthermore, circulating factors may play a role in the link between mitochondrial respiration and physical function.

We did not observe statistically significant increases in mitochondrial area or length, complex IV expression, or mitochondrial respiration in old heterochronic mice when compared to old isochronic controls. Other labs have reported that old heterochronic mice exhibit improved muscle regeneration and reduced fibrosis after muscle injury, but no differences in muscle performance when compared to old isochronic controls (22, 23). Taken together, these results suggest that there is a greater negative impact of circulating factors in old blood on mitochondrial structure and function than can be restored by factors in young blood. Another potential explanation for this observation is
that intrinsic properties of muscle from older animals may make these cells resistant to the potential benefits of factors found in young blood.

Notably, we did not observe any differences in mitochondrial morphology, complex IV expression, or mitochondrial respiration between young heterochronic or old heterochronic mice. When the circulating factors between young and old are mixed by heterochronic parabiosis, mitochondrial structure and function are similar between the parabiosed animals. Other labs have reported a similar response in heterochronic mice with muscle regeneration and muscle performance (22, 25). These results provide a striking demonstration that circulating factors can be a primary driver of mitochondrial structure and function.

Other studies have examined circulating factors as mediators of age-related differences and have also proposed specific proteins and metabolites that can impact mitochondrial function. For example, previous work from our lab has found that increased levels of IL-6 were associated with lower mitochondrial respiration in older adults (26). Additionally, other studies have also found that alterations in levels of IL-6 (27, 28), BCAAs (29, 30), and lipid metabolites (31, 32) are associated with changes in mitochondrial function. While further investigation of the identities of additional circulating factors is warranted, these results support a growing body of evidence that circulating factors are not only potential biomarkers of aging, but may underlie hallmarks of the aging process.
IV. CIRCULATING FACTORS, INTERVENTIONS TO IMPROVE HEALTHSPAN, AND MITOCHONDRIAL BIOENERGETICS

In Chapter Four, we examined the effects of human serum before and after intervention, either resistance training or resistance training plus caloric restriction, on muscle cells in vitro and to identify and test potential circulating factors responsible for mediating these changes. When we examined the overall effect of intervention on serum-mediated bioenergetics, we found mitochondrial respiration was significantly higher post-intervention compared to pre-intervention. These results are consistent with observations of increased skeletal muscle mitochondrial function after exercise interventions in older adults (28–33). Next, we examined the effect of intervention group, either RT or RT + CR, on serum-mediated bioenergetics. We found that post-RT serum significantly increased basal and ATP-linked mitochondrial respiration and had a trend for increased maximal mitochondrial respiration, while post-RT + CR serum had trends for increased maximal mitochondrial respiration and spare respiratory capacity. Previous studies examining the effect of RT on mitochondria report increased mitochondrial function as measured by phosphocreatine recovery time (33) and high-resolution respirometry of permeabilized skeletal muscle fibers (34, 35). Studies examining the effect of CR alone on skeletal muscle mitochondria found no changes in mitochondrial content (36) or mitochondrial function as measured by phosphocreatine recovery time (37). Exercise and CR are rarely combined in studies examining mitochondrial function. Other studies have reported that aerobic exercise alone increased mitochondrial content and mitochondrial enzyme activities involved in electron transport and fatty acid oxidation, while caloric restriction sufficient to induce weight loss did not (38). The results of our study are also consistent with a previous study examining the effects of 10% rat serum on the mitochondrial bioenergetics of cultured β-cells (39). They found that serum
factors alone from CR rats increased glucose-stimulated insulin secretion, preserved mitochondrial function in response to glucose toxicity, and modified mitochondrial morphology and dynamics. These data suggest that serum factors alone are sufficient to induce mitochondrial changes that reflect the effects of interventions such as RT and CR.

Notably, we observed a wide range of responses to intervention with serum-mediated bioenergetics by examining the change in maximal respiration across all participants. There appear to be three groups of responders: negative responders, non-responders, and positive responders. While there is debate in the literature about whether there are true non-responders or if some of these observations could be attributed to measurement variability that is not adequately controlled for (40, 41), this observation is also consistent with previous studies that reported heterogeneous responses to a variety of exercise interventions (34, 42–47). Indeed, this pattern of heterogenous response in terms of physical function was also observed in the participants from I’M FIT, the parent study for the samples utilized in this study (48). We also observed some sex differences in serum-mediated bioenergetics. In particular, female participant serum from the RT group significantly increased basal and ATP-linked mitochondrial respiration and had trends for increased maximal respiration and spare respiratory capacity. We did not observe any significant increases in the male participants. These findings are consistent with observations of mitochondrial function by high-resolution respirometry that females had greater intrinsic mitochondrial respiratory rates (49) and exhibit decreased ADP sensitivity and increased sensitivity to malonyl-CoA-mediated respiratory inhibition in skeletal muscle compared to men (50). Furthermore, these differences in mitochondrial respiration are supported by previous research, including sex differences in fiber type and fuel utilization during exercise (reviewed in (51)). These findings suggest that
circulating factors are potential mediators of both heterogeneous responses as a whole and sex differences in response to intervention.

We found significant correlations between improvements in serum-mediated bioenergetics and improvements in physical function, as measured by Mat-sf, 400-m walk time, and gait speed, and improvements in inflammation, as measured by IL-6 and CRP. These results are consistent with cross-sectional studies completed in a subset of I'M FIT participants, where higher blood cell bioenergetics was associated with faster gait speed, knee extensor strength, and grip strength as well as lower levels of IL-6 (52, 53). Therefore, the data suggest that improvements in mitochondrial bioenergetics, physical function, and inflammation in older adults are all connected and potentially mediated by blood-borne circulating factors.

We performed metabolomics analyses to identify potential circulating factors that can mediate bioenergetic capacity. Our analyses revealed 25 potential circulating factors that were positively or negatively associated with the pattern of responses that we observed in the change in serum-mediated maximal respiration. We identified 3 metabolites that were significantly and positively associated with serum-mediated maximal respiration (arabinose, inosine, and d-gluconic acid γ-lactone) and 2 metabolites that were significantly and negatively associated with serum-mediated maximal respiration (3-hydroxymethylglutarate and α-hydroxisobutyrate). Of these, we chose to test inosine, 3-hydroxymethyl-3-glutarate, and α-hydroxisobutyrate as potential circulating factors.

Inosine is a purine nucleoside produced by the catabolism of adenosine and has been examined for potential use in improving exercise performance (54–56), epilepsy (57), multiple sclerosis (58), and Parkinson's disease (59) due to potential neuroprotective
properties shown in rats (60, 61). We did not find a significant relationship between inosine concentration and increased serum-mediated bioenergetics. This suggests that inosine is not a metabolite that can directly affect mitochondrial bioenergetics and may be downstream of another process or that the mechanism of action involves other cell types.

3-hydroxy-3-methylglutarate is an off-product that is a result of the incomplete conversion of 3-hydroxy-3-methylglutaryl-CoA to acetyl-CoA and acetoacetate by defective or inefficient 3-hydroxy-3-methylglutaryl-CoA lyase. 3-hydroxymethyl-3-glutarate accumulates in the mitochondria and high levels in urine have been associated with inborn errors of metabolism (62, 63). We found a strong relationship between increasing concentrations of 3-hydroxymethyl-3-glutarate and decreased serum-mediated bioenergetics, particularly with maximal respiration. This suggests that, at least in older adults, resistance training and caloric restriction can alleviate some of the negative effects of 3-hydroxymethyl-3-glutarate on mitochondrial bioenergetics, through mechanisms that can be explored in future studies.

α-hydroxisobutyrate is an organic acid derived from α-ketobutyrate that is produced by amino acid catabolism and glutathione anabolism (64). α-hydroxisobutyrate has been presented as a potential early biomarker for insulin resistance and glucose intolerance (64, 65). In particular, α-hydroxisobutyrate has been associated with increased insulin resistance and in vitro treatment of pancreatic β-cells with α-hydroxisobutyrate inhibited glucose-mediated insulin secretion (65). We found a strong relationship between increasing concentrations of α-hydroxisobutyrate and decreased serum-mediated bioenergetics. This suggests that α-hydroxisobutyrate may play a key role in the development of insulin resistance and the improvements in insulin sensitivity that are
observed with RT and CR interventions. Collectively, these results suggest that
individual circulating factors, such as 3-hydroxymethyl-3-glutarate and α-
hydroxisobutyrate, can mediate mitochondrial bioenergetics and are powerful potential
therapeutic targets for further investigation.

Interestingly, we observed more robust direct effects of metabolites on mitochondrial
bioenergetics that were more negatively associated with serum-mediated bioenergetics,
such as 3-hydroxy-3-methylglutarate and α-hydroxyisobutyrate. This is consistent with
recent observations of old blood factors being more dominant in old blood (25), including
our observations that old blood had a greater negative effect on mitochondrial
bioenergetics in Chapter Three. A recent publication demonstrated that dilution of old
blood with saline-albumin resulted in improvements in key aspects associated with
heterochronic parabiosis, including improved muscle regeneration, reduced liver
adiposity and fibrosis, and increased hippocampal neurogenesis (66). These results
indicate that targeting negative blood-borne circulating factors would have a greater
therapeutic benefit and should be the focus of future studies. Additionally, these results
further support a growing body of evidence that circulating factors are not only important
for the aging process but in interventions to improve healthspan as well.
V. FUTURE DIRECTIONS FOR RESEARCH

In Chapter Two, we determined that dietary composition, such as a Western or Mediterranean diet, directly affects systemic bioenergetic capacity. Thus far, previous research has been dominated by alterations in single macronutrients, especially fat. Further investigation is needed to determine the mechanistic links between dietary composition, dietary source, and mitochondrial bioenergetics. We also reported that increased mitochondrial respiration in response to fatty acids was significantly and positively correlated with insulin resistance, particularly in the Western diet group. The monkeys included in this study did not yet exhibit overt diabetes, suggesting that this phenomenon may be an early adaptation to insulin resistance. Further research is needed to elucidate the links between the development of insulin resistance and mitochondrial dysfunction. A longitudinal study to determine the time course and trajectories of mitochondrial changes would allow for the exploration of potential early compensation mechanisms that may include changes in mitochondrial structure and function in response to altered glucose metabolism and reduced insulin sensitivity. Given that we found α-hydroxybutyrate, a metabolite that is associated with the development of insulin resistance, could directly affect mitochondrial bioenergetics, the roles of circulating factors should also be explored in this context.

To build upon our preliminary findings with heterochronic parabiosis in Chapter Three, future research should examine other tissues susceptible to age-related bioenergetic decline, such as the brain, heart, and liver. It should be determined if the effects we have observed on mitochondrial structure and function are directly due to circulating factors or simply the dilution of negative circulating factors, as suggested by recent developments in the field (66). Additionally, the identities of the circulating factors involved in mediating
age-related bioenergetic decline should be determined. The parabiosis model would also be useful to answer other outstanding questions in the field of mitochondrial bioenergetics, including the roles of circulating factors in the development of cognitive impairment and Alzheimer's disease, sarcopenia, and other age-related diseases.

The work presented in this dissertation indicates that circulating factors play a major role in mediating mitochondrial bioenergetics. In Chapter Four, we have focused on metabolites, but other types of circulating factors are likely involved in mediating mitochondrial bioenergetics as well. Further research should explore other factors, including, but not limited to: proteins, circulating RNAs, exosomes, damage-associated molecular patterns such as cell-free DNA, or other components of the senescence-associated secretory phenotype.

Serum-mediated bioenergetics can be expanded to many other completed clinical trials or new study cohorts could be created from stored serum samples, allowing many new questions to be explored, including: differences between old and young, the progression of cognitive decline, longitudinal studies of healthy aging, other lifestyle or pharmacological interventions to improve healthspan, and other applications outside of the biology of aging. This method should also be expanded to many other cell types, allowing for the examination of serum-mediated bioenergetics across a wide range of tissues to understand the systemic nature of the effects of circulating factors. Organoids or induced pluripotent stem cells (iPSCs) would also improve the translatability of serum-mediated bioenergetics discoveries in humans.

Additionally, this dissertation highlights the potential to target circulating factors for therapeutic interventions. In particular, we identified 3-hydroxy-3-methylglutarate and α-
hydroxyisobutyrate as potential targets to modify mitochondrial bioenergetics. However, there are likely many targets to be found from RT and CR interventions and healthy aging. One could also imagine there are circulating factors that mediate the negative bioenergetic aspects of Western diet or the positive bioenergetic aspects of Mediterranean diet. Therefore, serum-mediated bioenergetics has the potential to support the development of inhibitors of negative circulating factors or compounds that mimic or enhance the effects of more positive circulating factors. Future studies should explore this potential to develop therapies to improve healthspan in older adults.
VI. CONCLUSIONS

In conclusion, this dissertation provides evidence that circulating factors mediate bioenergetic capacity in multiple contexts, including: aging, diet, and exercise. We determined that dietary composition, such as a Western or Mediterranean diet, directly affects systemic bioenergetic capacity, and increased fatty acid respiration in muscle is associated with early insulin resistance. Using heterochronic parabiosis, we demonstrated that circulating factors modulate age-related bioenergetic decline via changes in mitochondrial structure and function, and circulating factors associated with old blood have a greater negative effect on mitochondrial structure and function when compared to young blood. Finally, we established that serum-mediated bioenergetics can recapitulate the effects of resistance training and caloric restriction in vitro and are connected to key features of human health such as physical function and reduced inflammation, and identified new potential mediators of mitochondrial bioenergetics, such as 3-hydroxy-3-methylglutarate and α-hydroxyisobutyrate.
REFERENCES

Jenny L. Gonzalez-Armenta
CURRICULUM VITAE

Wake Forest School of Medicine
Medical Center Blvd
Winston-Salem, NC, 27127
jcollin@wakehealth.edu

51 E Fourth St, Apt 1603
Winston-Salem, NC 27101
jlgonzalezarmenta@gmail.com
(336) 944-2297

EDUCATION

2016 – present Ph.D., Molecular Medicine and Translational Medicine
Wake Forest School of Medicine, Winston-Salem, NC
Expected graduation: May 2021

2012 – 2016 B.S., Chemistry
Western Carolina University, Cullowhee, NC
American Chemical Society Certified Concentration
Magna Cum Laude

RESEARCH EXPERIENCE

2016 – present Ph.D. Candidate
Department of Internal Medicine – Molecular Medicine
Department of Internal Medicine – Gerontology and Geriatric Medicine
Wake Forest School of Medicine
Winston-Salem, NC
Mentor: Anthony Molina, Ph.D.
Project: Effects of circulating factors in mediating changes in systemic mitochondrial bioenergetics in response to aging, diet, and exercise

2015 – 2016 Undergraduate Research Assistant
Department of Chemistry and Physics
Western Carolina University
Cullowhee, NC
Mentor: Jamie Wallen, Ph.D.
Project: Studied protein interactions during DNA replication with single-stranded binding protein in T7 bacteriophage

2014 – 2015 Undergraduate Research Assistant
Department of Chemistry and Physics
Western Carolina University
Cullowhee, NC
Mentor: Scott Huffman, Ph.D.
Project: Development of printed microfluidic devices for analytical applications
*Received Honors College Undergraduate Research Grant to support this work

2013 – 2014

Undergraduate Research Assistant
Department of Chemistry and Physics
Western Carolina University
Cullowhee, NC

Mentor: Jack Summers, Ph.D.
Project: Development of a storm surge sensor using electrochemistry

PUBLICATIONS

2020

2019

2018

Manuscripts in submission

2021

Manuscripts in preparation

2021
JL Gonzalez-Armenta, BJ Nicklas, AJA Molina. Serum-Mediated Mitochondrial Respiration from Weight Loss and Exercise Interventions.
PUBLISHED ABSTRACTS

AWARDS AND HONORS

2018 **Emerging Scholars and Professionals Organization/Biological Sciences Symposium Speaker Travel Award from the Gerontological Society of America**
Received funding for travel expenses to present at and attend the Gerontological Society of America National Meeting in Boston, MA in November 2018. This award was given to young investigators who had oral presentations in the ESPO/Biological Sciences Symposium.

2018 **Molecular Medicine and Translational Science Travel Award**
Received $500 for travel expenses to present at and attend the Gerontological Society of America National Meeting in Boston, MA in November 2018. This award is given to two MMTS students in the Fall and one student in the Spring.

2017 **MiP Scholarship Recipient**
Received award from the Mitochondrial Physiology Society to cover lodging and meals during MiPSchool 2017 in Obergurgl, Austria.

2016 **ACS Outstanding Senior Award**
The American Chemical Society Outstanding Senior Award recognizes a graduating senior chemistry major who has demonstrated excellence in academics, undergraduate research, and service to the department. Students were nominated by faculty and the award recipient is recognized at the ACS Western Carolinas Local Section Meeting.

2015 **Honors College Undergraduate Research Grant**
Received $500 from the Honors College at Western Carolina University to purchase supplies for a research project in Scott Huffman’s laboratory.

2014 **Frank Brown Sr. Chemistry Scholarship**
This merit scholarship is given to outstanding chemistry students at Western Carolina University. Amount: $2,000 per year for two years.

2012 **Paul A. Reid Scholarship**
This scholarship is given to graduates of Surry County high schools to attend Western Carolina University. Amount: $1,600 per year for four years.
2012 **Edward M. Armfield Sr. Foundation Scholarship**
This scholarship is given to graduates of Surry County high schools to attend undergraduate institutions. Amount: $5,000 per year for four years.

2012 **Honors College Distinguished Achievement Scholarship**
This merit scholarship provides support to high achieving students who are members of the WCU Honors College. Amount: $2,000 per year for four years.

RESEARCH FUNDING

National Institutes of Health, T32 pre-doctoral training grant in Integrative Lipid Metabolism, Inflammation, and Chronic Diseases (HL091797)
Funding Dates: 08/01/17 – 07/31/18
Amount: $23,844
Mentor: Anthony Molina, Ph.D.

PRESENTATIONS

Oral Presentations

* One of top 5 abstracts submitted by young investigators selected for platform presentations during the Emerging Scholars and Professional Organization / Biological Sciences Section Symposium

Poster Presentations

2016 **JL Collins**, BM Foster, JR Wallen. “Investigation of Amino Acid Residues in the C-Terminal Tail of Bacteriophage T7 Single-Stranded DNA Binding Protein
Predicted to Bind DNA Polymerase.” National Conference for Undergraduate Research, Asheville, NC, USA, April 2016.

2015 BM Foster*, **JL Collins***, M Carver, T Ellenberger, MD Gainey, JR Wallen. “Analysis of amino acid residues predicted to be essential for loading of T7 DNA polymerase on to a primase-helicase ring.” Southeastern Regional Meeting of the American Chemical Society, Memphis, TN, USA, November 2015. (*Co-presenter)

Campus/Departmental Presentations

2019 **JL Gonzalez-Armenta.** “Identifying Mediators of Mitochondrial Metabolism Associated with Diet and Exercise Interventions in Older Adults.” Molecular Medicine and Translational Sciences Seminar Series. Winston-Salem, NC, USA, September 2019.

Community Presentations

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Organization, Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 – Present</td>
<td>Gerontological Society of America, Member</td>
</tr>
<tr>
<td>2014 – 2016</td>
<td>American Chemical Society, Member</td>
</tr>
<tr>
<td>2013 – 2016</td>
<td>WCU Chemistry Club, Member, Treasurer (2015), President (2016)</td>
</tr>
<tr>
<td>2013 – 2016</td>
<td>Alpha Lambda Delta Honors Society, Member</td>
</tr>
<tr>
<td>2012 – 2014</td>
<td>WCU Honors College Board of Directors, Member</td>
</tr>
</tbody>
</table>