The density of primes dividing a term in the Somos-5 sequence
Open Access Fund Publications
Item Files
Item Details
- abstract
- The Somos-5 sequence is defined by $ a_{0} = a_{1} = a_{2} = a_{3} = a_{4} = 1$ and $ a_{m} = \frac {a_{m-1} a_{m-4} + a_{m-2} a_{m-3}}{a_{m-5}}$ for $ m \geq 5$. We relate the arithmetic of the Somos-5 sequence to the elliptic curve $ E : y^{2} + xy = x^{3} + x^{2} - 2x$ and use properties of Galois representations attached to $ E$ to prove the density of primes $ p$ dividing some term in the Somos-5 sequence is equal to $ \frac {5087}{10752}$.
- subject
- mathematics
- Somos-5 sequence
- contributor
- date
- 2020-02-25T20:45:39Z (accessioned)
- 2020-02-25T20:45:39Z (available)
- 8/3/17 (issued)
- identifier
- Davis, B., Kotsonis, R., & Rouse, J. (2017). The density of primes dividing a term in the Somos-5 sequence. Proceedings of the American Mathematical Society, Series B, 4(2), 5-20. (citation)
- https://doi.org/10.1090/bproc/26 (doi)
- http://hdl.handle.net/10339/95995 (uri)
- language
- en (iso)
- publisher
- American Mathematical Society
- rights
- https://creativecommons.org/licenses/by-nc-sa/3.0/ (uri)
- source
- Proceedings of the American Mathematical Society
- title
- The density of primes dividing a term in the Somos-5 sequence
- type
- Article