Home WakeSpace Scholarship › Open Access Fund Publications

TREX1 as a Novel Immunotherapeutic Target

Open Access Fund Publications

Item Files

Item Details

abstract
Mutations in the TREX1 3’ → 5’ exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.
subject
immunology
contributor
Hemphill, W. (author)
Simpson, S. (author)
Liu, M. (author)
Salsbury Jr., F. (author)
date
2021-08-23T16:08:38Z (accessioned)
2021-08-23T16:08:38Z (available)
2021-04-01 (issued)
https://doi.org/10.3389/fimmu.2021.660184 (doi)
identifier
http://hdl.handle.net/10339/98981 (uri)
language
en_US (iso)
publisher
Frontiers
source
Frontiers in Immunology
title
TREX1 as a Novel Immunotherapeutic Target
type
Article

Usage Statistics